
Note on Algebraic Effects
From Universal Algebra to Programming Language Design

July 25, 2025

Sources and Acknowledgments

The foundational material is loosely based on several existing sources, and may draw on
the following (among others):

• A. Bauer, What is algebraic about algebraic effects and handlers? [1].

• A. Nuyts, Understanding Universal Algebra Using KEML Diagrams [11].

• X. Leroy, Effect Theory: From Monads to Algebraic Effects [8].

However, the structure, emphasis, and interpretation reflect my own understanding and
pedagogical goals.

Disclaimer: These notes are still under construction and are being developed as part of
my effort to compile and clarify in the same document some foundational and practical
material that I find important and interesting. Sections may be incomplete or subject to
revision, or may contain errors. Feedback is welcome.

1 Genealogy of Ideas

1.1 From early semantics to monads

• Strachey & Scott (1960s–70s) invented denotational semantics, but had to churn
up ad hoc machinery for every new effect (explicit stores for state, exceptions, etc..).

• Moggi 1989 [10] observed that every effect can be captured semantically by an
endofunctor T equipped with a ret and bind (a Kleisli triple)— computational
λ-calculus—marking one of the first appearances of monads in PL theory.

1.2 Monads in practice

Wadler (1990) [17] introduced the concept into Haskell, giving birth to familiar abstractions
like IO, State s, and Maybe to simulate effect in a pseudo-imperative way without giving
up on purity. The endofunctor underlying the monad describes a syntactic translation into
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a target language in which the desired effectful operations (e.g. get, set or raise can be
defined, and the underlying structure of ret and bind allow to sequence effects.

Such a syntactic translation is not new, in fact it dates back to the double-negation
translation, or the CPS translation in landing a pure language in target language in which
call/cc can be defined.

1.3 Algebraic theories for effects

The indirect approach of monadic programming (monad first, effectful operations second),
despite its strengths in structuring some effects, does not explain how different effects
compose algebraically and does not provide any recipe to answering the generic question:
"What is the right monad?"

Plotkin & Power [12] took the direct algebraic theories road: taking effectful operations as
primitives whose computational behaviour is captured by equations. Working their way
from these first principles, they proved that the canonical monad TΣ for such an equational
theory Σ (signature + equations) corresponds Moggi’s monads. Thus exceptions, state,
nondeterminism, I/O, etc. are algebraic.

1.4 Effect Handlers

If algebraic theories provide the syntax of effects, we still need a way to interpret them.
Plotkin & Pretnar introduced in [13] effect handlers as algebra homomorphisms that
interpret syntax trees and produce results. Handlers generalise both try/catch and the
categorical notion of fold.

2 Simple Algebraic Theories (SATs)

Background and notation We start with the standard denotational setup for effects:

• A base category C with finite products ( Set for the most part; more generally a
symmetric monoidal V-enriched category with cotensors).

• A strong monad T : C → C (strength is standard for call-by-value λ-calculus semantics).
Computations of type X live in TX (cf. Moggi [10]).

• Two standard categories associated to T :

– Kleisli CT : same objects as C; morphisms X → Y are arrows X → TY in C.
– Eilenberg–Moore T -Alg: objects (A, a) with a : TA → A satisfying the

algebra axioms; homomorphisms h : (A, a) → (B, b) satisfy h ◦ a = b ◦ Th.

This section recalls how the following perspectives from the triangle encode the same notion
of algebraic theory in three complementary ways.

Signature+Equations

Monads Lawvere theories
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2.1 Universal Algebra presentation

We start from the traditional data of operation symbols and equations, because that is how
most working algebraists first meet the subject.

Definition 2.1 (Algeraic Theory). A (simple) algebraic theory presentation A comprises

(i) for each arity n ∈ N a set OA(n) of n-ary operation symbols;

(ii) for each n ∈ N a set of equations EA(n) whose elements are pairs of n-ary terms.

Terms TA(n) are freely generated from variables x1, . . . , xn and the operations in OA.

Definition 2.2 (Models/Algebras). Given an algebraic theory A, an A-model (A, JK) of
comprises:

(i) a set A that interprests the domain of discourse

(ii) an interpretion of every symbol o ∈ OA(k) as a function JoK : Ak → A

such that each equation in EA(n) holds point-wise. i.e. for every equation t =A u ∈ EA(n),

∀a1, · · · , an ∈ A. JtK(a1, . . . , an) = JuK(a1, . . . , an)

Homomorphisms between A-models are the evident structure-preserving maps.

2.2 Monadic Viewpoint

Proposition 2.3. Every algebraic theory A determines a monad MA on Set.

Construction. Concretely, MAX is the quotient of the absolutely free term algebra TAX
by the congruence generated by the equations in EA, and the monad structure is induced
by term substitution.

Definition 2.4 (Monadic SAT). A monadic simple algebraic theory is a monad M =
(M,η, µ) on Set; an M -algebra is an Eilenberg–Moore algebra (A,α : MA → A).

Signatures, theories, and the signature functor

Definition 2.5 (Signature and signature functor). A (finitary) signature Σ consists of
sets Σn of n-ary operation symbols (n ∈ N). Its associated signature functor on Set is the
polynomial endofunctor

FΣ(X) =
∑
σ∈Σn

X n.
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The syntax functor: direct construction

Definition 2.6 (Syntax functor TΣ). For a set X, define TΣX inductively as the set of
finite well-founded Σ-terms over X:

• if x ∈ X, then Var(x) ∈ TΣX;

• if σ ∈ Σn and t1, . . . , tn ∈ TΣX, then Node(σ; t1, . . . , tn) ∈ TΣX.

For g : X → Y , define TΣg : TΣX → TΣY by renaming variables and recursing through
nodes.

Proposition 2.7 (Monad structure). There is a monad (TΣ, η, µ) on Set where:

• The unit ηX : X → TΣX, ηX(x) = Var(x) (inject),

• The multiplication µX : TΣTΣX → TΣX is t 7→ t ▷ id (flatten).

with Kleisli binding operator ▷ is given by:

Var(x) ▷ f := f(x), Node(σ; t⃗) ▷ f := Node
(
σ; t1 ▷ f, . . . , tm ▷ f

)
.

Proof sketch. Well-founded recursion gives the operations; the monad axioms reduce to the
associativity of substitution and identity laws, each checked by structural induction on
terms.

The syntax functor as the free monad on the signature functor Seen as functor,
the set Σ-terms with variables in X is contained in TΣX, which is satisfies the following:

TΣX ∼= X + FΣ(TΣ)

i.e a term is either a variable or constructed from a constructor in Σ and subterms in TΣ.

=⇒ Hence, for X ∈ Set, writing HX := X + FΣ(−). TΣXis the intial algebra (fixpoint) of
HX .

The following theorem showcases the standard construction of free monads over polynomial
functors. via initial algebras and ω-chains.

Theorem 2.8. If FΣ preserves colimits of ω-chains (e.g. polynomial), then for each X the
endofunctor HX has an initial algebra

αX : X + FΣ(TΣX)
∼=−−→ TΣX,

and TΣX is the colimit of the ω-chain

X −→ X + FΣX −→ X + FΣ(X + FΣX) −→ · · · .

The units ηX and multiplications µX arise by initiality, and together (TΣ, η, µ) is the free
monad on FΣ.
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Adding equations: the term monad of a theory

Definition 2.9 (Congruence and quotient monad). Given a theory (Σ, E), let ≡E be the
least congruence on TΣX that is closed under substitution and contains all instances of
axioms in E. Let

TΣ,EX := TΣX
/
≡E .

Since ≡E is substitution-stable, η and µ descend, making TΣ,E a monad.

Example 2.10 (Free monoid as a term monad). Let Σ = {e : 0, m : 2} and E be
associativity and unit laws. Then FΣ(X) = 1+X2 and TΣX is the set of finite lists over X;
ηX(x) = [x] and µX concatenates lists-of-lists. The free (Σ, E)-algebra on X has underlying
set TΣ,EX ∼= TΣX, multiplication by concatenation, and unit the empty list.

2.3 Lawverian formulation

In his seminal work [6], Lawvere introduced a syntax-free formulation of algebraic theories
where they are presented as small categories.

Definition 2.11 (Lawvere theory). A Lawvere theory is a small category L

• equipped with finite products,

• contains an object ⋆, called the generic object, such that every object X ∈ L is
isomorphic to a finite cartesian power of ⋆, that is there exists n ∈ N and an
isomorphism X ∼= ⋆n.

Intuition:

• ⋆ represents the domain of discourse, the set in which te variables live.

• L(⋆n, ⋆m) is the set of m-tuples of n-ary terms that can be built out of the operations
in OA and quotiented by EA.

Definition 2.12 (Models). A model of a Lawvere theory L is a product-preserving functor

F : L → Set

Such models form the category Mod(L) := [LM ,Set]Π of product-preserving functors.

2.4 Relating the three formulations

Proposition 2.13. Each monad M on Set gives rise to a Lawvere theory LM := Kl(M)op

with a generic object ⋆ := 1 = {∗}.

Proposition 2.14. For any alhebraic theory A, the category of MA-algebras is isomorphic
to the category of A-models.

Proposition 2.15. For every monad M , the functor category [LM ,Set]Π of product-
preserving functors is equivalent to EM(M), compatibly with the respective forgetful functors
to Set.
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Gathering the results above, we obtain the following KEML [11] commuting diagram: (cf.
[11] for the full diagrammatic derivation)

Kl(M) EM(M)

LM

free

op
comparison

2.5 Enriched perspective: monads ↔ Lawvere theories
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Part I — Foundations of Algebraic Effects

This preliminary section is an introduction to the type of computational effects considered
in the rest of the manuscript: algebraic effects and handlers. This programming abstraction
is introduced from first principles taking the algebraic lens whereby an effect is presented
by a signature of operation symbols together with equations; and handlers deconstruct
such effectful computations by a universal fold principle. This lets us separate what effectful
programs say (syntax) from how an execution strategy interprets them (handlers).

3 Minimal Universal-Algebra Preliminaries

Signatures, terms, equations, models. A (simple) signature is a family (Σ(n))n∈N of
n-ary operation symbols. Given a set X of variables, Σ determines a set of well-founded
Σ-trees TmΣX (‘’raw Σ-terms”).

An algebraic theory is (Σ, E) where E is a set of axioms identifying equal open terms,
inducing a congruence on Σ-trees that is stable by substitution.

A model M fixes a carrier set |M | and assigns to each symbol op ∈ Σ(n) a map JopKM :
|M |n → |M | so that all equations hold pointwise. Homomorphisms are the evident structure-
preserving maps between models. .

From signatures to the term monads. As a functor, the term construction TmΣ is the
free monad on the signature endofunctor FΣ(X) =

∑
n∈N, op∈Σ(n)X

n; its unit ηX : X →
TmΣX injects variables as one-leaf trees, and its multiplication µX : TmΣTmΣX → TmΣX
flattens a tree of trees by grafting subtrees for leaves (substitution). The monad laws reduce
to the associativity and identity of substitution.

Adding equations ⇒ the quotient monad. Writing ≡E for the least substitution-
stable congruence containing all instances of E, one can define TmΣ,EX := TmΣX/≡E , the
quotiented set of X-labelled Σ-tree. Because ≡E is closed under substitution, both η and µ
factor through the quotient, so TmΣ,E is again a monad and TmΣ,EX is the free model of
thealgebraic theory given by (Σ,E).

4 Computational Effects as Algebraic Theories

Effectful behaviour is presented by an algebraic theory A = (ΣA,EA). Operation
symbols are the constructors of effects and equations are the laws governing
their behaviour. The induced monad TmΣA,EA is the container of computations,
and models of A are exactly Eilenberg-Moore algebras for TmΣA,EA .

From n-ary Symbols to Input-Output Arities The minimal preesentation of simple
algebraic theories above treats arity as a natural number, which is sufficient to cover for ...
In order to give a programming-intuitive account for other effects, we need to generalise
signatures alon two axes.

7



infinite arities Standard n-ary symbols (Σ(n)) and raw trees/quotients, as above; this suffices for
effects with fixed finite fan-out .

op : Oop, with Oop ∈ Set

so a node labelled op branches along "Oop" subtrees, i.e a continuation from Oop

(effect output) to Σ-trees.

parameters Many operations are more naturally formulated as carrying a parameter at each use
site 1, we use a parametrised signature.

(opi)i∈Iop : n, with Iop ∈ Set

so a node labelled opi ∈ Σ(n) stores a parameter a ∈ I alongside n subtrees. This
legitimises speaking of an input attached to a symbol already at the signature level .
State example uses exactly this: sett carries s ∈ S as a parameter; get is parameterless
.

algebraic operations via generic effects. Following the above generalisations, the
signature Σ of an effect is given by elements of the form:

op : I → O, with I,O ∈ Set

A similar Σ-terms construction works over the signature functor 2

FΣ(X) =
∑
op∈Σ

Iop ×XOop ,

In the induced monad T, an ary algebraic operation op : I → O is a natural family
opX : (TX)O → (TX)I homomorphic in each argument. Power & Plotkin show this is
equivalent to the programmer-friendly generic effect opX : I → TO from which opX is
obtained by substitution, i.e. through a Kleisli bind (opX κ) i = (opX i) ▷ κ. Intuition: the
output arity sits in O (or (TX)O); the input side is what we substitute into its continuation
slots. here and reserve the operational story for handlers.

Example 4.1 (Global state). We start by fixing a set of states S, and present the
parameterised signature with two operations

get : 1 ↠ S set : S ↠ 1

and the standard equations (using generic effects and the kleisli sequencing ;)

set(s) ; get() = η(s) get() ; set(s) = set(s) set(s) ; set(s′) = set(s′).

read returns the current store; write overwrites it; the last write trumps previous ones.
1The behaviour of global state presented with two operations get, and set is more naturally expressed

as the inerplay of get and setx where x ranges over the set of states
2Categorically, this generalisation requires working over an enriched base with cotensors (_)Oop , thus

allowing the generalised arities I → O (that are not just finite powers).
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5 Tensor Products: Combining Independent Effects

Given disjoint theories (Σ1, E1) and (Σ2, E2), their sum Σ = Σ1 ⊎Σ2 models independently
generated effects.

5.1 Dual view: Comodels and Coalgebras

Every algebraic theory admits a dual semantics via comodels :

JopKW : I ×W → O ×W

This describes how a world state W responds to each operation request.

6 Interpreting Operations: Handlers

So far we have only considered the initial semantics of an algebra in which the operations
remain uninterpreted and the Σ-terms remain uneavaluated.

Handlers give meaning to programs by folding syntax trees into a target algebra. Concretely,
given a TmΣ-algebra (A,α), and an interpretation of X-variables r : X → B, a handler is
the unique homomorphism3

J−KH : TmΣX −→ A

determined by a return clause r and one clause per operation

JηX(x)KH = r(x) Jop(i; (to)o∈O)KH = opA(i;
(
JtoKH

)
o∈O).

Operationally, this amounts to: replacing each variable x by r(x) to get a Σ-tree of A’s,
then folding the tree using the single-layer evaluaor α.

Example 6.1. Nondeterminism → lists. Let Σ = {fail : 0, choose : 2} with semilat-
tice laws. Handle to lists B = ListX.

r(x) = [x], failB = [ ], chooseB(u, v) = u++v.

Exceptions → option. Σ = {raisee : 0 | e ∈ E}. With B = OptionX, let r(x) =
Some(x) and raisee,B = None.

The resumption clause has no continuations (nullary op), matching the algebraic
picture.

A handler calculus: reifying the homomorphism We want a piece of syntax that
is the algebra homomorphism J−KH : TmΣ,EX → B promised by initiality of the free
monad[14].

We start with by the free Σ-term syntax

Terms TmΣX ∋ t ::= ret x | op
(
i; (to)o∈O

)
(op : I → O).

Here ret x stands for the leaf ηX(x), and each node op(i;κ) carries a parameter i and a
continuation κ in O → TmΣ,EX (i.e. "O" subtrees).

3By initiality property
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Handler syntax We first expose the algebraic clauses exactly as [r, h] : X + TmA → A:

h ::=

{
ret x 7→ r(x)

op
(
i; (ao)o∈O

)
7→ opA

(
i; (ao)o∈O

)
for each op : Iop → Oop ∈ Σ

where r : X → B and each opA : Iop×AOop → A. The syntax is accordingly extended
with the application of the handler to a term.

Terms TmΣX ∋ t ::= · · · | {t} with h

computation rules The operational behaviour is already determined by the underlying equational theory.

(i) handle-return passes the value to the return clause;

(ii) handle-op captures the delimited continuation κ and runs the matching clause,
possibly resuming κ zero, or several times.

{ret x} with h = r(x)
∀i. {ti} with h = ui

{op(i; κ)} with h = opA(i; κ)

Relating the two classic lenses

• Moggi. Pick a strong monad T first. in which a denotation JopK of constructors of
effects can be defined. the language is interpreted in the associated Kleisli category,
in which the monad T is the container of computations [10].

=⇒ Monadic programming: Programs are translated into T in which effect constructors
have a concrete implementation.[17].

• Power & Plotkin. Specify directly the desired effectful behaviour by (Σ, E). TmΣ,E

is the monad whose Eilenberg-Moore algebras coincide with Σ-models, and each op
induces a natural family opX : (TmΣ,EX)n → TmΣ,EX

=⇒ Algebraic effects and handlers: Programs remain in the free syntax exposing an
abstract interface to handlers that provide an implementation.

TODO: fix notations of the following and ..

state monad Given a fixed a set of states S. The global state monad on Set is given by the triple:

StX := S → (X × S)

ηX : X → StX ηX(x) := λs. ⟨x, s⟩

µX : StStX → StX, µX(m) = s 7→ m′(s′) where m(s) = ⟨m′, s′⟩

7 Programming with algebraic effects and deep handlers

We adopt a minimal call-by-value core calculus with an explicit interface for algebraic
operations and deep handlers. The calculus is intentionally small: just variables, lambdas,
application, let, ⟨⟩.
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Definition 7.1 (Syntax of expressions).

values v ::= x | λx. e | ⟨⟩ | ⟨v1, v2⟩ | inlv | inrv
computations e ::= v | e e | letx⇐ e in e | op(v) | {e} with h

handlers h ::= { retx 7→ e; (opi(x; k) 7→ ei)i }

evaluation contexts F ::= [] | eF | F v | letx⇐ F in e

E ::= [] | {E} with h | F

eplain how this syntax is more general? A hndler, In each operation clause the
variable k is a resumption, a function that, when applied to a value, continues the suspended
computation under the same handler (deep handlers), no contraints

Definition 7.2 (Small-step semantics (deep handlers)). We write E[e] for plugging e into
context E. Reduction rules:

(βv) (λx. e) v → e[x := v]

(let) letx⇐ v in e → e[x := v]

(return) {v} with {retx 7→ e0; . . . } → e0[x := v]

(perform) {E[op(v)]} with {retx 7→ e0; . . . , op(x; k) 7→ eop, . . . }
→ eop

[
x := v, k := λy. {E[y]} with h

]
Remarks.

(i) If a surrounding handler does not have a clause for op, the operation is propagated
outwards to the next handler.

(ii) We do not restrict uses of the resumption κ (no scoped resumptions here). When a
clause ends with κe, we may call it tail-resumptive; such clauses can be implemented
without rewrapping the dynamic context

8 Examples, more examples

We now specialise the general picture to common effects. Each is given by operations and
equations, its induced monad, and a canonical handler reading.

Finite Nondeterminism

Presentation. A binary choose and a nullary fail, with the semilattice laws (associativity, com-
mutativity, idempotence) and fail as unit . Trees are binary choose-nodes and fail
leaves; different bracketings/permutations collapse under the axioms.

Operations in the induced monad. TX ∼= Pfin(X); η(x) = {x}, µ is union. The operations are chooseTX(U, V ) = U ∪V
and failTX = ∅, and their generic counterparts are

choose : 1 → T{0, 1} ∼= TB fail : 1

where choose() = {tt, ff} and fail() is undefined.

A list-collecting handler. Evaluate an effectful computation into a list by resuming the continuation twice at
each choice and concatenating the results; This is the archetypal “resume more than
once” example.
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Exceptions

Presentation. For a set E of exceptions, constants raise(e), typically no extra equations . In trees,
exception nodes are 0-ary and absorb their context under evaluation.

Induced monad and generic operation. TX ∼= X + E with ηX(x) = inj1(x) and µX collapsing nested sums

µX(x) = match cwith{inj2(e) 7→ inj2(e) | inj1(y) 7→ y}

The generic operation is the right injection raiseTX = inj2.

Catchers as handlers. A catcher X+E → X is exactly a T -algebra, hence a handler is ?

Global State

Presentation. For a fixed set S of states, get : 1 → S and set : S → 1 with the usual laws:
set(s); get ≡ η(s), get; set(s) ≡ set(s), set(s); set(t) ≡ set(t).

9 Handler Variants

The deep handlers we have described so far are the natural maps out free algebras that
enjoy ideal algebraic properties. Programming practice is not so ideal in general, and once
handlers are introduced they need to be considered in all their arbitrary generality, i.e.
folds over syntax trees, hence several variants arise, each with distinct implications for
typing, operational behaviour. In this section, we briefly outline some of them, thus fixing
the terminology we use later.

Deep vs. Shallow Handlers. A deep handler traverses the entire syntax tree — rein-
stalling itself when a captured continuation is resumed to intercepts further effects invoked
by the resumed computation. A shallow handler handles only the next operation;

TΣX TΣ2
Y

TΣ2
(TΣX)

h

h♯ µ

Figure 1: Deep vs. shallow handlers.

A shallow handler, by contrast, handles only the outermost operation node — resuming a
continuation does not reinstall the handler. If further effects are be handled, the calling
computation or the the continuation itself must provide a new handler. Mathematically,
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this is not a catamorphism, but rather a morphism in the Kleisli category of the remaining
operations’ monad:

h♯ : TΣ1+Σ2X −→ TΣ2(TΣ1⊎Σ2X)

The corresponding computational rule of such a handler h = {retx 7→ e0; . . . , op(x; k) 7→
eop, . . . } (syntax of the handler remains the same, semantics change) is as displayed

{E[op(v)]} with h♯ → eop
[
x := v, k := λy. E[y]

]
((shallow))

One vs. Multi-shot Corresponds to the linearity of captured continutation seen as
a resource. A one-shot continuation may be resumed at most once (typical in systems
optimized for speed and interaction with mutation). A multi-shot continuation may be
resumed multiple times (useful for backtracking/nondeterminism), but requires copying or
reifying continuations.

Parameterised Handlers. A parameterised handler [3] carries adn additional state
across the interpretation of operations, such as a log accumulator, or heap cell. These are
homomorphisms in the Kleisli category of the state monad:

h♯ : TΣX −→ (S → TΣY )

10 Static vs. dynamic effect instances

From Exposing all statically known operations, to exposing dynamically generated instances
(namespaces for operations). New instances may be created at run time; handlers can target
an instance or a the whole “known”signature.

Instance-based Effects. Sometimes, we wish to install multiple versions of the same
operation, e.g., two separate references, or two file descriptors. This requires operations to
be indexed by an instance (a name or label), yielding signatures like:

getr : 1 → S, setr : S → 1

Handlers then eliminate operations with matching instance tags. The type system must
guarantee that no aliasing or escape occurs; this leads to systems like Eff, which track
instances using either affine types or singleton types.

11 Free and Freer Monads: Effects as Syntax Trees

WE have seen that every algebraic theory Σ possesses a free monad TΣ. If we want to write
effectful programs and later interpret them with different handlers, we need a first-order,
inspectable syntax tree. This can be done using Free monads (without introducing a full
calculus for handlers)—a datatype that is:

• Inductively defined (so we can pattern-match and write folds);

• Parametric in the signature functor (so one datatype covers every theory Σ);
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• The initial Σ-algebra, hence enjoys the same universal property as TΣ.

In functional programming, the free monad on a functor f is defined as:

type Free f a := Pure a | Impure (f (Free f a))

with Pure = η, and bind performing substitution then flattening (µ). Its universal property
is exactly that of the categorical free monad.

O. Kiselyov and H. Ishii [5] observed that the Functor instance required for sig might be
cumborsome and resists scaling. Their Freer construction works by storing the continuation
externally [5] (à la generic effects), thus doing away with the functoriality constraint (on
sig) that would otherwise be indispensable to recurse over f (Free f a).

type Freer f a :=
| Pure : a → Freer f a
| Impure : f b → (b → Freer f a) -> Freer f a

11.1 Equational Reasoning with Handlers

Given A = (ΣA,EA) nd its its associated term monad TmΣA,EA . If h is handler interpreting
TmΣA,EAX in M , then because it is an algebra homomorphism, every equation t ∼=EA u in
EA implies:

h(t) = h(u)

within the model model M . Thus, the equational theory on ΣA lifts to the observational
theory of the target interpretation.

Handler Law Algebraic explanation Preconditions
Fusion: hΣ1 ◦ hΣ2 = hΣ2◦Σ1 homomorphism composition Both handlers are deep
Commutation: hΣ1 ◦ hΣ2 =
hΣ2 ◦ hΣ1

tensor product of disjoint theories disjoint signatures

Table 1: Equational properties of handlers via algebra
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Part II — Practical Design of Algebraic Effects and
Handlers

By the end of the first Part I, we possessed a purely semantic notion of a handler: an
algebra homomorphism folding an abstract syntax tree, which we have generalised in the
untyped minimal calculus Λeff . However, the syntax alone cannot prevent the programmer
from mistakenly forgetting to supply such a handler, or from installing one that handles an
operation it never actually receives. It also cannot warn us that a seemingltly pure function
quietly performs an effect, or that a delimited continuation will be duplicated.

Safety guarantees (=⇒ Type and effect systems), modularity: multiple handlers (order of
installation matters =⇒ how to guarantee intended behaviour (i.e algebraic fusion laws)),
multiple occurrences of the same effect (requires multiple handlers =⇒ how to get each
occurence to be handled by the intended handler?)

12 Type-and-Effect Systems

The main issue type-and-effect systems adress is that of type safety : guaranteeing that a
well-typed program do not go wrong, and most importantly do not leave effects unhandled.
A weaker version is type safety is the gurantee that any effect footprint the program may
leave at run-time is captured by its type.

To this end, several approaches have been proposed and explored, we outline the two main
philosophies on reading effet annotations on types.

Traditional : Rows and row polymorphism: type specify what effects the computation might
perform.

Contextual reading : capabilities: types specify what what capabilities the context must provide.

A central aim is to track, at the type level, which operations a computation may invoke.

Modularity and repeated effects. Handling multiple instances of the same effect while
retaining modularity motivates either a generative, instance-scoped approach (fresh names
as first-class values) or lexical/ capability schemes.

12.1 Row-Polymorphism

12.1.1 From sets to rows

Take the set of operation names occurring in a program body, {get, set, raise} in a toy
example. A row is simply that finite set, written in type syntax as

⟨get, set, raise⟩ – closed row

⟨get, set, ρ⟩ – row variable ρ keeps it open

15



where ρ is a row variable ranging over sets of labels. Row variables endow the calculus with
polymorphism: the same function can work for an arbitrary superset of effects [7, 2, 9].

The operational intuition is captured by the following; row variables as “placeholders/open
slots”in the effect set waiting to be filled.

get, set, . . . ρ

Whenever a handler eliminates an operation, say get, the type system enforces a corre-
sponding set-difference

⟨get, set, ρ⟩ ⊖ ⟨get⟩ = ⟨set, ρ⟩,

reflecting the fact that a deep handler is a fold landing in the free syntax of the residual
signature.

Typing judgement and rules A judgement is written

Γ ⊢ e : τ ! ∆

meaning that e returns a value of type τ and may perform effects in { = .}

TODO: insert selected typing rules?

• ret v is pure, hence row ∆ = ∅.:

• Performing sn effect adds a singleton row containing the invoked operation.

• Sequential composition merges rows by union.

• Handle subtracts the handled operations from the row of the body.

The type checker never needs to know the complete set of effects up-front, only that the
handler removes a subset.

Principal types and decidable inference In [7], Leijen proves that for a Hindley-Milner
core plus effect rows:

• Every typable term possesses a principal type scheme.

• That scheme is found by a variant of Algorithm W in which ordinary type variables
coexist with row variables, and unification is extended to union-of-sets constraints.

Polymorphism and the value-restriction It is common knowledge that polymorphism
combined with mutable state is a soudness pitfall. In thesetting of algebraic effects and
handlers, however, the classic ML value restriction is not required: Kammar & Pretnar
show in [4] that unrestricted HM let-polymorphism is sound so long as operations are
monomorphic and we do not have ML-style reference cells (handlers can’t express them;
they only simulate dynamically scoped state). What does go wrong is the naïve extension
where effect operations themselves are made polymorphic and combined with ordinary HM
generalisation: later work by Sekiyama-Tsukada-Igarashi [16] shows this breaks type safety
and fixes it by signature restriction, i.e., constraining where quantified type variables may
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appear in an operation’s interface (which also supports “private effects” via public-signature
restriction). An orthogonal line by Sekiyama-Igarashi [15] restores safety by restricting
handlers (ruling out interfering resumptions). This reconciles “no value restriction needed”
in the monomorphic operations setting with the need for extra discipline once operations
become polymorphic.

13 Modularity, Scope, Effect instances etc.

13.1 Static vs. dynamic effect instances

From Exposing all statically known operations, to exposing dynamically generated instances
(namespaces for operations). New instances may be created at run time; handlers can target
an instance or a the whole “known”signature.

Instance-based Effects. Sometimes, we wish to install multiple versions of the same
operation, e.g., two separate references, or two file descriptors. This requires operations to
be indexed by an instance (a name or label), yielding signatures like:

getr : 1 → S, setr : S → 1

Handlers then eliminate operations with matching instance tags. The type system must
guarantee that no aliasing or escape occurs; this leads to systems like Eff, which track
instances using either affine types or singleton types.

13.2 Lexically scoped instances

13.3 Capabilities

13.4 Abstraction-safe tunnelling

14 Graded Effect Systems

Grading switches the perspective of effect types from “which effects?” to “how
much and in what shape?”, by threading a small algebra (monoid + an order)
through the type rules so that sequencing composes grades and weakening tracks
safe approximations.

14.1 Grading — measuring how much happens

relevant: [18, 19]

14.2 Affine and Linear Effect Tracking — controlling duplication
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