
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Game Semantics Study of Virtual Effects

HAMZA JAAFAR and
∗
, Inria / Nantes Université, France

We introduce the first fully abstract game semantics model for a typed language with algebraic effects, effect

handlers, and dynamically generated effect instances. Central to this work is the study of effect propagation

— a transitory in which an effect is performed but not yet handled, suspended between the program and

its environment, which reveals subtle interactive behaviors, prompting a refinement of the standard game

semantics interface.

To account for this additional form of interaction, we extend the standard pure interaction interface of

game semantics consisting of questions and answers with effectful moves that involve the propagation of

effects and the yielding of delimited continuations. Crucially, we introduce a novel trace equivalence that

matches contextual equivalence by abstracting away from unobservable forwarding steps.

To support this finer analysis, we develop handling structures that explicitly track how effects are handled

and how continuations are invoked. In parallel, a view-based semantics is introduced to model the program’s

evolving perspective throughout interaction. These contributions allow us to revisit and generalize key

semantic notions—such as innocence and visibility—in the setting of virtual effects.

Together, these developments culminate in a compositional and fully abstract model that illuminates the

semantics of effectful computation under dynamic effect generation, offering a refined understanding of

interaction in the presence of algebraic effects and handlers.

CCS Concepts: • Theory of computation→ Denotational semantics; Control primitives; Operational
semantics.

Additional Key Words and Phrases: Algebraic Effects, Handlers, Game Semantics

HAMZA JAAFAR and
11
, Inria / Nantes Université, France

ACM Reference Format:
. 2018. A Game Semantics Study of Virtual Effects. 1, 1 (July 2018), 68 pages. https://doi.org/XXXXXXX.

XXXXXXX

1 Introduction
Algebraic effects were originally introduced by Power and Plotkin [Plotkin and Power

2001, 2002] to provide a directdenotational account for syntactic entities that perform
effects such as get, set for global state, raise for exceptions, orchose for non-deterministic

choice, etc.
The combination of algebraic operations with effect handlers [Plotkin and Pretnar

2013] is a more recent and powerful abstraction for programming with effects. Effect

handlers generalize exception handlers by giving access not only to the raised effect but

also to its delimited continuation. This enables a modular and compositional approach to

effectful programming, supports user-defined effects, and facilitates effect combination in

a seamless way.

Authors’ Contact Information: Hamza JAAFAR;, Inria / Nantes Université, Nantes, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM XXXX-XXXX/2018/7-ART

https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: July 2018.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2

A central challenge with this abstraction lies in managing multiple occurrences of the

same effect while preserving modularity. Two main approaches have been proposed: the

lexical approach and the generative approach, as described in [de Vilhena and Pottier

2023]. In the lexical approach [Biernacki et al. 2019b; Brachthäuser et al. 2020; Zhang

and Myers 2019], one introduces effect instances locally, and the handler responsible for

these instances is determined statically, preventing instance leakage. This static discipline

enforces a form of effect safety, ensuring that all performed effects are handled. In contrast,

the generative approach provides the possibility of generating dynamically fresh instances

of an effect [Bauer and Pretnar 2015], that can be referred by their names, and be passed

around as values. While this increases flexibility, it introduces challenges such as aliasing

between names of effect instances, that needs to be tamed in order to enforce effect safety

via a type-and-effect-system [de Vilhena and Pottier 2023].

In this paper, we adopt the generative approach, but allow for unsafe interaction: effect
instances may remain unhandled, and aliasing is not prevented. Our goal is to model the

interaction between a program and its environment in such a language. Trace models

for higher-order languages capture program behavior as sequences of observable actions

-calls and returns- where the arguments of these actions may themselves be (abstractions

of) functions. We follow the methodology of operational game semantics (OGS) to define

such a trace model.

The central idea of OGS is to represent programs as labelled transition systems (LTS),

derived from the operational semantics of the language, in combination with a decompo-

sition of normal forms into observable and interacting parts. This approach is particularly

well suited to languages with generative effects, as demonstrated by Laird’s seminal work

on ML-style higher-order references [Laird 2007]. OGS also naturally accommodates

control operators such as call/cc or the 𝜇-binder of the 𝜆𝜇-calculus [Jaber and Murawski

2021a]. In the absence of such control features, it enforces a well-bracketing discipline on

the interaction—matching calls with returns—as is standard in game semantics [Abramsky

et al. 2000; Hyland and Ong 2000].

To extend OGS to a language with algebraic effect handlers, we incorporate:

• actions representing the execution of an effect;

• a fine-grained representation of the control flow between the program and its

environment, to account for the exchange of delimited continuations triggered by

handled effects.

Our long-term objective is to obtain a fully abstract trace model, capturing contextual

equivalence of our language. As a first step in this direction, we prove that trace equivalence

of our model is sound with respect to contextual equivalence. Moreover, we show that

a well-bracketing condition can be imposed on the environment’s interaction without

compromising soundness. However, we exhibit counterexamples to full abstraction: trace

equivalence turns out to be too discriminating to characterize contextual equivalence.

To keep the model simple, we forbid the exchange of effect instances between the

program and its environment. This avoids the need to dynamically track which effect

instances have been disclosed—information that would otherwise be required for reasoning

about interactions.

, Vol. 1, No. 1, Article . Publication date: July 2018.



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

A Game Semantics Study of Virtual Effects 3

2 Background material on Operational Game Semantics (OGS)
We begin by recalling the definition of the standard call-by-value 𝜆-calculus with basic

types: the unit value and Booleans. This calculus forms the foundation for our development

of Operational Game Semantics (OGS).

Values v := ⟨⟩ | ff | tt | 𝑥 ∈ Vars | 𝜆𝑥.t
Terms t ::= v | t t | if t then t else u
Evaluation Ctx E ::= [] | E v | t E | if E then t else u

(a) Term Syntax

E[(𝜆𝑥.t) v] →𝑣 E[t{v/𝑥}]
E[if tt then t1 else t2] →𝑣 E[t1]
E[if ff then t1 else t2] →𝑣 E[t2]

(b) Operational Semantics

Fig. 1. CBV 𝜆-calculus syntax and semantics

Normal Forms. The considered evaluation strategy is the left variant of call-by-value:

only values are substituted during function application. This induces a natural definition

of irreducible terms.

Normal forms n := v | E[𝑥 v]

Operational Game Semantics (OGS)
OGS models terms by observing their interactions with all compatible environments

(program contexts). These interactions are expressed as traces in a labelled transition

system (LTS) guided by the operational semantics. The model is inspired by traditional

game semantics [Abramsky andMcCusker 1997; Laird 2007], where programs are strategies

in an interaction game with the environment.

Intuition. A program (Propponent) is executed against an abstract environment (Oppo-

nent) until the evaluation reaches a normal form. A returned value represent an answer
over a communication channel, whereas an open-stuck expression E[𝑥 v] to a question, i.e.
an interactive call of 𝑥 with v as input that expects an answer in E. The control is then
passed to Opponent, who continues the evaluation and initiates the next interactive move.

These moves form a trace.

The LTS is bipartite: states are either active (under the control of the Proponent) or
passive (waiting on Opponent). Transitions are labelled by actions initiated alternately by

each player.

Label Grammar.

Abstract values 𝑎 := 𝑥 | ⟨⟩ | ff | tt
Labels ℓ := 𝑎 (return value)

| 𝛼 [𝑥 𝑎] (function call)

(1)

, Vol. 1, No. 1, Article . Publication date: July 2018.



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4

These abstract values and call labels represent the observable interface between term

and context. When a function is evaluated to a 𝜆-abstraction, it is abstracted into a fresh

variable.

Passive state:

𝐼 := ⟨𝜋,𝛾⟩
• 𝜋 : a continuation stack, keeping track of evaluation context variables

• 𝛾 : a mapping from abstract names to concrete functions and contexts

Active state:

⟨t; 𝐼 ⟩
The abstract machine starts in an active state and generates a trace by alternating

control with the passive state.

Eval

t →𝑣 u

⟨t;𝛾⟩ −→ci ⟨u;𝛾⟩
(a) Internal Evaluation

Px

abstract(v) = (𝑎,𝛾𝑎)

⟨v;𝛾⟩ ret𝑎−−−→ci ⟨𝛾 · 𝛾𝑎⟩

⟨𝛾⟩
𝛼 [ret𝑎]
−−−−−−→ci ⟨𝛾 (𝛼) [𝑎];𝛾⟩ Ox

(b) Pure Moves and Responses

Fig. 2. Transitions of the abstract interaction LTS

Interaction Example
Let t = 𝜆𝑥.ff and let the context E = 𝜆𝑦.if 𝑦 () then tt else ff.

• Proponent state: ⟨t;∅⟩
• Opponent state: ⟨𝛼,𝛾⟩ where 𝛾 = {𝛼 ↦→ E}

Together, they form a configuration:

⟨𝐼 || t, 𝐼 ′⟩

Transitions interleave, modeling the evaluation of E[t] without syntactic substitution.
The LTS captures all possible interaction traces.

Abstract Continuations as Channels
Abstract continuations 𝛼 are treated as communication channels. For example:

• 𝛼 [𝑧 ff]: a question on function 𝑧 with argument ff

• 𝛼 [ret tt]: a response via continuation 𝛼

, Vol. 1, No. 1, Article . Publication date: July 2018.



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

A Game Semantics Study of Virtual Effects 5

t ::= · · · | op v | {t}with h
h ::= {ret𝑥 ↦→ t; op𝑥 ↦→ v}
E ::= · · · | {E}with h

(a) Term Syntax

E[{ret v}with h] →𝑣 E[t{v/𝑥}]
E[{Kop [op v]}with h] →𝑣 w v (𝜆𝑦.{K[𝑦]}with h)

(b) Operational Semantics

Fig. 3. 𝜆eff𝑣 calculus: syntax and operational semantics

Constraints on Opponent Behavior: Visibility, Well-Bracketing, and Innocence
While the OGS framework models a wide range of contextual interactions through its

abstract environment and trace-based semantics, it often becomes necessary to restrict

the capabilities of the Opponent to ensure meaningful and tractable notions of program

equivalence. Three central constraints used in game semantics to this end are: (along three

axes/lines)

Well-bracketing. This constraint enforces a stack discipline: every call must be answered

before another call is completed. Violations of well-bracketing occur in the presence of

control features like continuations or exceptions. In the absence of such features, Proponent

and Opponent are expected to alternate moves in a properly nested fashion.

Visibility. Visibility requires that each move (e.g., a question or answer) be justified by a

visible part of the history. In other words, a move must relate only to currently open calls.

This prevents the Opponent from acting on information that is not locally available in the

trace, reflecting a kind of information locality.

Innocence. The innocence constraint states that the strategy’s behavior at a given point

should depend only on the current view (the visible portion of the interaction history), not

the entire history. This is a stricter form of locality and ensures that Proponent strategies

are memoryless with respect to unseen branches of the interaction.

These constraints are crucial in many settings, particularly for proving full abstraction

results or ensuring that strategies correspond to definable, type-respecting program

behaviors.

In our setting, the lack of control features like call/cc allows us to inline evaluation con-
texts and manage them structurally without needing to track explicit continuation stacks.

However, when extending the model with effects or control operators, these constraints

become active axes of semantic expressivity. Their presence or absence fundamentally

changes the kinds of behaviors the Opponent can manifest in a given trace.

Extending to Algebraic Effects and Handlers
We extend the calculus with algebraic effect operators and effect handlers, yielding 𝜆eff𝑣 . A

handler h manages a single operation op:

, Vol. 1, No. 1, Article . Publication date: July 2018.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6

New normal forms include stuck effect calls:

n ::= · · · | Eop [op v]

Extending the OGS. Intuitively, on may want to add the following transition:

⟨E[Kop [op v]], 𝛾⟩
𝛼 [𝛽 [op𝑎] ]
−−−−−−−−→ci ⟨𝛾 · 𝛾𝑎 · {𝛼 ↦→ E, 𝛽 ↦→ K}⟩ (2)

When evaluating with abstract environment 𝛽 , the label 𝛽 [𝛼op [op𝑎]] denotes both an

answer and a question. If Opponent handles op, it may bind the delimited continuation.

Conclusion and Roadmap
We have presented the OGS framework by first constructing a CBV LTS and extending it

to accommodate abstract environments, algebraic effects, and interaction traces. The rest

of this document formalizes the transition system for dEff and explores properties such

as well-bracketing and visibility in effectful settings.

3 The language Λeff

3.1 Syntax of Λeff

We consider a fine-grained call-by-value 𝜆-calculus [Levy 2004] with typed algebraic

effects and handlers. Its syntax is given in Figure 4 and its type system in Figure ??.
The computations of the shape op v are responsible for triggering effects. They are given

by an operation symbol op associated to an effect E and a particular instance 𝜄 of this

effect. An effect E is described by its signature {(op𝑖 : 𝜏𝑖 ↠ 𝜐𝑖)𝑖}.
For a handler h = ⊎𝑖 ({op𝑖 𝑥𝑖 𝜅𝑖 ↦→ u𝑖})𝑖 ⊎ {ret𝑥 ↦→ t}, we define hret := {ret 𝑥 ↦→ t} and
hop𝑖 := {op𝑖 𝑥𝑖 𝜅𝑖 ↦→ u𝑖}, and hdl(h) := {(op𝑖)𝑖} (i.e. the exact set of effects handled by h).
In Fig. 4, we only highlight the additional names that would be absent in a standard

presentation. They are given by function names L whose elements we range over by

𝑓 , 𝑔, delimited and undelimited continuation names range over by 𝜅,κ ∈ K and 𝑐, 𝑑 ∈ C
respectively, as well as effect names 𝑒 ∈ E. Further details about their semantic role will

be postponed to later sections.

3.2 Operational semantics
The propagation of effects to abstract continuations is to be seen as a form of interaction

(in a game semantics sense) whereby the program inquires whether the environment’s code
(corresponding to the abstract continuation) handles some specific effect or not. For this

reason, we privilege in Fig. 5 an abstract machine presentation of the operational semantics
(à la [Hillerström et al. 2020]) whose reduction rules make this flow of information explicit

through the structural rules ↦→struct:=↦→fwd ∪ ↦→psh and the structure of its configurations.

The reduction relation ↦→op is defined over pairs M formed by a running computation M
and an effect instance context I crucial to provide a semantics to new E. The former has the

shape ⟨⟨⟨t ||| S ◦◦◦ T⟩⟩⟩ consisting of three components: the active term t, the active evaluation
stack S, and the forwarded evaluation stack T. We will often use ⟨⟨⟨t ||| S⟩⟩⟩ as syntactic sugar
for ⟨⟨⟨t ||| S◦◦◦ [] ⟩⟩⟩ and conflate a term t with ⟨⟨⟨t ||| [] ⟩⟩⟩, i.e. its initial embedding in running

computations. We will also write �⇒eval for ↦→eval ∪ ↦→psh.

, Vol. 1, No. 1, Article . Publication date: July 2018.



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

A Game Semantics Study of Virtual Effects 7

types 𝜏,𝜐 ::= 1 | B | Z | 𝜏 × 𝜐 | 𝜏 → 𝜐

signatures E ::= {(op𝑖 : 𝜏𝑖 ↠ 𝜐𝑖)𝑖}
(a) types

values v, w := ⟨⟩ | ff | tt | n
| 𝑥 | 𝜆𝑥 .t | 𝑓

effects e ::= op w | 𝑒
terms t, u ::= ret v | op w | 𝑒 |new E

| w v | if v then t else u
| S[t]

handlers h := {ret𝑥 ↦→ t} | {op𝑥 𝑦 ↦→ t}⊎h
eval frames E ::= let𝑥= [] in t | {[]}with h
stack frames S, T ::= [] | 𝑎 [] | T[S]

(b) expressions

M, N ::=⟨⟨⟨t ||| S ◦◦◦ T⟩⟩⟩∈ Λeff

(c) running computations

Fig. 4. Λeff syntax.

⟨⟨⟨(𝜆𝑥 .t) v ||| S⟩⟩⟩ ↦→eval⟨⟨⟨t{v/𝑥} ||| S⟩⟩⟩
⟨⟨⟨ret v ||| S[let𝑥= [] in t]⟩⟩⟩ ↦→eval⟨⟨⟨t{v/𝑥} ||| S⟩⟩⟩
⟨⟨⟨ret v ||| S[{[]}with h]⟩⟩⟩ ↦→eval⟨⟨⟨t{v/𝑥} ||| S⟩⟩⟩ when hret = {ret 𝑥 ↦→ t}

⟨⟨⟨op v ||| S[{[]}with h] ◦◦◦ T⟩⟩⟩ ↦→eval⟨⟨⟨t{v/𝑥}{𝜆𝑧.{T[ret 𝑧]}with h/𝑦} ||| S⟩⟩⟩
when hop = {op𝑥 𝑦 ↦→ t}

⟨⟨⟨op v ||| S[E] ◦◦◦ T⟩⟩⟩ ↦→fwd⟨⟨⟨op v ||| S ◦◦◦ E[T]⟩⟩⟩ when op ∉ hdl(E)
⟨⟨⟨𝑒 ||| S[E] ◦◦◦ T⟩⟩⟩ ↦→fwd⟨⟨⟨𝑒 ||| S ◦◦◦ E[T]⟩⟩⟩ (★1)

⟨⟨⟨E[t] ||| S⟩⟩⟩ ↦→psh⟨⟨⟨t ||| S[E]⟩⟩⟩
⟨⟨⟨𝑎[t] ||| S⟩⟩⟩ ↦→psh⟨⟨⟨t ||| S[𝑎 []]⟩⟩⟩ (★2)

Fig. 5. operational semantics

The only non-standard rules are the starred ones (★1) and (★2) involving the propagation

of effect in presence of abstract codata. Notice that we did not add the unsound rule ( )

which may seem like the innocuous dual to (★1).

⟨⟨⟨op v ||| S[𝜅 []] ◦◦◦ T⟩⟩⟩↦→fwd⟨⟨⟨op v ||| S ◦◦◦ 𝜅 [T]⟩⟩⟩ ( )

Indeed, as it will be evident in section 4, the ability to capture delimited continuations

means that the environment can capture fragments of the program’s evaluation stack, and

, Vol. 1, No. 1, Article . Publication date: July 2018.



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8

as a result, gain control of a program’s handler. Therefore, the possibility of 𝜅 [] handling
the effect (even though op v is abstract from the environment’s perspective) cannot a
priori be ruled out.

3.3 Metatheory
3.3.1 Interactive Expressions. In the following, we will mostly be interested in the interac-
tive subset of terms and computations on which our OGS semantics operate.

Definition 3.1. A term t (resp. a running computation M) is said to be interactive when it

is well-typed and admits a typing of the form I; Γ; ∅ ⊢c t : ⊥ (resp. I; Γ ⊢c M).

3.3.2 Normal forms. Since normal forms describe the interaction interface between the

program and its environment, we will privilege a useful presentation where we identify

the interaction patterns that are causing a computation to be stuck. By expliciting these

patterns, the normal forms are written as P(𝑎); they involve a co-pattern P (described in

fig. 7) representing the program controlled code and a name 𝑎 abstracting an environment

controlled codata. The token □ represents a codata hole whose filling, i.e. the syntactic
substitution thereof, is given by the application (P, 𝑥) ↦→ P(𝑥) of co-patterns to codata
defined as P(𝑥) := P{□ ↦→𝑥}.

Nf ::= ⟨⟨⟨ret v ||| 𝑐 [] ⟩⟩⟩ | ⟨⟨⟨ret v ||| S[𝜅 []]⟩⟩⟩ evaluated returners
| ⟨⟨⟨e ||| S[𝜅 []] ◦◦◦ T⟩⟩⟩ | ⟨⟨⟨e ||| 𝑐 [] ◦◦◦T⟩⟩⟩ unhandled effects

where e ::= 𝑒 | op v
| ⟨⟨⟨𝑓 v ||| S⟩⟩⟩ open applications

Fig. 6. interactive normal forms of Λeff .

Borrowing from the terminology of [Biernacki et al. 2020], we identify in fig. 6 open-stuck
terms in which the reduction of the term depends on an abstract function 𝑓 or an abstract

delimited continuation 𝜅 [] and where the continuation is controlled by the program,

as well as context-stuck terms corresponding to unhandled effects and fully-evaluated

returners inside an abstract continuation 𝑐 []. The two classes of normal forms correspond

to different forms of interaction; the former calls for a question whereas the latter for an

answer.

Lemma 3.2 (normal forms shape). For all interactive computations I; Γ ⊢c M such that

M ̸↦→op, there exists a co-pattern P and a name 𝑎 ∈ dom(Γ) s.t. M = P(𝑎).
Our notion of program equivalence builds on the Closed Instantiations of Uses (CIU)

equivalence, introduced by Mason and Talcott [Mason and Talcott 1991]. Whereas Morris-

style contextual equivalence [Morris Jr 1969] quantifies over general contexts—including

those placing holes under 𝜆-abstractions to handle open terms—CIU-equivalence restricts

attention to evaluation contexts and handles open terms by quantifying over substitution

maps as well.

In our setting, we refine this idea by leveraging the distinction between variables and

names: we define equivalence only for interactive terms I; Γ ⊢c M, where M contains no

free variables, and all names are drawn from Γ. We assume that Γ contains exactly one

, Vol. 1, No. 1, Article . Publication date: July 2018.



393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

A Game Semantics Study of Virtual Effects 9

P ::=⟨⟨⟨ret v ||| □⟩⟩⟩|⟨⟨⟨e ||| □ ◦◦◦ S⟩⟩⟩ context-stuck

| ⟨⟨⟨ret v ||| S[□]⟩⟩⟩|⟨⟨⟨e ||| S[□] ◦◦◦ T⟩⟩⟩
| ⟨⟨⟨□ v ||| S⟩⟩⟩

}
open-stuck

where e ::= 𝑒 | op v
(a) syntax of co-patterns

control-stuck

cont-val

I; Γ ⊢v v : 𝜏

I; Γ ⊢⟨⟨⟨ret v ||| □⟩⟩⟩: ¬¬𝜏

cont-eff

I; Γ; ⊢c e : 𝜏 I; Γ ⊢s S :𝜏⇝𝜐

I; Γ ⊢⟨⟨⟨e ||| □ ◦◦◦ S⟩⟩⟩: ¬¬𝜐

open-stuck

lambda

I; Γ ⊢v v : 𝜏 I; Γ ⊢ S : ¬𝜐
I; Γ ⊢⟨⟨⟨□ v ||| S⟩⟩⟩: ¬(𝜏 → 𝜐)

delim-cont

I; Γ ⊢ P : ¬¬𝜏 I; Γ ⊢ S : ¬𝜐
I; Γ ⊢ P(S[□]) : ¬(𝜏 ⇝ 𝜐)

(b) typing judgements for co-patterns

Fig. 7. co-patterns: syntax and types.

continuation name, no delimited continuation names, and that all types in Γ are free of

effect signatures E. This last restriction ensures that no effect instances can be exchanged

between the program and its environment. We refer to such typing contexts as initial,

since these constraints do not generally hold as interaction proceeds. Equivalence between

M1 and M2 can then be defined as each approximating the other. Quantifying over name

assignment for Γ, the continuation name 𝑑 of Γ is then mapped to an evaluation context.

This provides a definition of CIU equivalence quantifying solely on name assignment.

Definition 3.3. (ciu-approximation) We consider two interactive terms M1, M2 such that

both I; Γ ⊢c M𝑖 (for 𝑖 ∈ {1, 2}), with Γ initial. Then M1 is said to be ciu-approximated by

M2, written I; Γ ⊢ M1 ⪯𝑐𝑖𝑢 M2, when for all instance contexts I′ ⊇ I, for all continuation
names 𝑐f and for all name assignments 𝛾 such that I′; 𝑐f : ¬1 ⊢ 𝛾 : Γ, if M1{𝛾} ⇓op 𝑐f [⟨⟩]
then M2{𝛾}⇓op𝑐f [⟨⟩].
Equivalence between M1 and M2 is then defined via mutual approximation. Quantifying

over all name assignments for Γ, the continuation name 𝑑 is interpreted as an evaluation

context. This yields a form of CIU-equivalence based solely on quantification over name

assignments.

We note that this definition excludes terms with names of positive types such as B
or Z, which should rather be handled using free variables. A mild generalization of our

approach could accommodate such terms by also quantifying over variable substitutions.

However, for the sake of simplicity, we leave this extension to future work.

4 Abstract Interaction
The abstract interaction LTS is a bi-labelled transition system. It describes the interactive
execution of a term (𝑃𝑟𝑜𝑝𝑜𝑛𝑒𝑛𝑡 ) inside and abstract program context (𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡 ). Through-
out the execution, both parties play the role of an active term as well as that of an active
evaluation stack, which is reflected in 𝑃𝑟𝑜𝑝𝑜𝑛𝑒𝑛𝑡 ’s alternating between active and passive

, Vol. 1, No. 1, Article . Publication date: July 2018.



442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10

states, hence the bipartite part. The transitions mark this interactive role swapping and

their corresponding labels correspond to the active 𝑃𝑙𝑎𝑦𝑒𝑟 ′𝑠 move. The internal operational

evaluation of 𝑃𝑟𝑜𝑝𝑜𝑛𝑒𝑛𝑡 (in an active state) are accounted for by silent transitions.

4.1 Nominal abstraction
When an active term reaches a normal form, it discloses the information needed for

the environment to continue computing a value. This is done through the abstraction
process whereby the codata occurring in the active normal form are abstracted away and

transformed into names that are handed over to the environment as part of various nominal
patterns, capturing the fact that the latter’s behaviour can only be parametric w.r. t. these
codata (unlike data that could be inspected to trigger a data-dependent reaction).
In a dual manner, upon receiving a nominal pattern, the passive player (who knows its

type) infers the types of the underlying disclosed names through a type inference system.

In the following, we will define the nominal abstraction of a few syntactic categories,

where we will introduce, for each, their abstract counterpart, the type inference system as

well as the generating focussing process that transforms a syntactic object into an ultimate

pattern [Lassen and Levy 2008] (its positive skeleton) together with a corresponding name

assignment map (its negative filling).

4.1.1 Abstract values. The values exchanged between 𝑃𝑟𝑜𝑝𝑜𝑛𝑒𝑛𝑡 and 𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡 are ab-

stracted away, by transforming a value into a nominal ultimate pattern (nup) A defined

over a set of function names 𝑓 ∈ L:

V, W := ⟨⟩ | n | ff | tt | 𝑓 | ⟨V, W⟩
We define in fig. 8 the abstraction process of values, where↗ denotes the corresponding

focussing process.

4.1.2 Abstract generalised values. Not only the structure of values is exposed in the

interaction of 𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡 and 𝑃𝑟𝑜𝑝𝑜𝑛𝑒𝑛𝑡 , but so are some fully-evaluated computations.

These generalised values1 are in turn abstracted away into a nominal computation pattern
(ncp) which is defined as:

A, B := ret A | 𝑒 | 𝑟 [𝑒]
where 𝑒 ∈ E is an abstract effect name and 𝑟 ∈ List(K) is a abstract (delimited) evaluation
stack defined over the set K of delimited continuations names.
Analogously to abstract values, we lift the focusing process to one that transforms a

computation in normal form into an abstract computation. We will denote it by the symbol

t.

4.1.3 Abstract normal forms. Continuing with our nominal abstraction of expressions, we

introduce abstract normal forms and abstract copatterns (acp) and for the sake of a uniform

treatment in-keeping with the classification of copatterns of fig. 7, we will express them

in terms of abstract computations in order to exhibit the underlying generalized questions

and answers structure.

1
computations that are but cannot do.

, Vol. 1, No. 1, Article . Publication date: July 2018.



491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

A Game Semantics Study of Virtual Effects 11

∅ ⊢v v : 𝜏 𝜏 ∈ {1,Z,B}
v ↗ (v, 𝜀) 𝜆𝑥 .t ↗ (𝑓 ; [𝑓 ↦→ 𝜆𝑥 .t])

v ↗ (V;𝛾) w ↗ (W;𝛾 ′)
⟨v, w⟩ ↗ (⟨V, W⟩, 𝛾 · 𝛾 ′) 𝑓 ↗ (𝑔; [𝑔 ↦→ 𝑓 ])

∅ ⊢v v : 𝜏 𝜏 ∈ {1,Z,B}
Γ ⊩v v : 𝜏 ⊲ ∅ Γ ⊩v 𝑓 : 𝜏 → 𝜐 ⊲ [𝑓 ↦→ (𝜏 → 𝜐)]

(a) abstraction of values.

v ↗ (A; 𝛾)
ret vt (ret A; 𝛾) op vt (𝑒 ; [𝑒 ↦→op v])

Γ ⊩v A : 𝜏 ⊲ Δ

Γ ⊩c ret A : 𝜏 ⊲ Δ; ∅ Γ ⊩c 𝑒 : ? ⊲ [𝑒 ↦→ ?]; ∅
Γ ⊢c 𝑟 [𝑒] : 𝜏

Γ ⊩c 𝜅 ::𝑟 [𝑒] : 𝜐 ⊲ ∅; [𝜅 ↦→𝜏⇝𝜐]
(b) abstraction of generalised values.

Fig. 8. nominal abstraction process.

CoPatterns ∋ p, q ::= ⟨⟨⟨A ||| □⟩⟩⟩ context-stuck
| ⟨⟨⟨□ A ||| 𝑑⟩⟩⟩|⟨⟨⟨□ A ||| 𝑑⟩⟩⟩ open-stuck

where ⟨⟨⟨𝑟 [𝑒] ||| □⟩⟩⟩, ⟨⟨⟨□[𝑟 [𝑒]] ||| 𝑑⟩⟩⟩ and ⟨⟨⟨□[ret A] ||| 𝑑⟩⟩⟩ are syntactic sugar for ⟨⟨⟨𝑒 ||| □ ◦◦◦ 𝑟⟩⟩⟩,
⟨⟨⟨𝑒 ||| 𝑑 [□] ◦◦◦ 𝑟⟩⟩⟩ and ⟨⟨⟨ret A ||| 𝑑 [□]⟩⟩⟩ respectively, and where the hole filling is given by the

application (p, 𝑎) ↦→ p[𝑎] where p[𝑎] := p{□ := 𝑎}.
In fig. 24 we introduce the abstraction process of copatterns. Naturally, it produces

an abstract copattern, a name assignment 𝛾 , in addition to a component 𝜉 , the abstract
forward, carrying information about the forward evaluation stack. It is either of the shape
∅ (indicating the absence of effects) or (𝑒, 𝑟, 𝛿) (indicating a performed effect 𝑒 to be

forwarded or handled) where 𝑟 represents the abstract (delimited) stack through which

said effect has been propagated and 𝛿 is another name assignment for abstracting the

effects and forward evaluation frames.

Example 4.1. Perhaps the simplest example is a fully-evaluated returner in the form of

𝑐 [ret v] that can be written as (□ ret v) (𝑐) and whose abstraction can be expressed as an

abstract copattern p =⟨⟨⟨ret A ||| □⟩⟩⟩ and the abstract codata 𝑐 .

Remark 1. Notice how the abstraction process of normal forms is not total. It is only

defined on effectful normal forms of a specific shape (involving forward frames F) that reflects
the order of effect propagation and the incrementation of the abstract forward mirrors this

gradual interactive process. The choice of keeping 𝛾 and 𝛿 (of 𝜉) and to combine abstract

codata belonging to both the program and the environment in 𝑟 has a technical benefit as

well as a conceptual one; as it maintains the distinction between passive interactions and

interactions with observation.

, Vol. 1, No. 1, Article . Publication date: July 2018.



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12

context-stuck

v ↗ (A, 𝛾A)
⟨⟨⟨ret v ||| □⟩⟩⟩t (⟨⟨⟨ret A ||| □⟩⟩⟩, 𝛾A, ∅)

return

v ↗ (A, 𝛿A)
⟨op v | □ ◦ F⟩ t (⟨⟨⟨𝜅 [op A as 𝑒] ||| □⟩⟩⟩, 𝜀, (𝑒, [𝜅], 𝛿A · [𝑒 ↦→ op v] · [𝜅 ↦→F]))

perform

⟨⟨⟨𝑒 ||| □ ◦◦◦ F[𝑟 ]⟩⟩⟩t (⟨⟨⟨𝜅 ::𝑟 [𝑒] ||| □⟩⟩⟩, 𝜀, (𝑒, 𝜅 ::𝑟, [𝜅 ↦→F]))
forward

open-stuck

v ↗ (A, 𝛾A)
⟨⟨⟨□ v ||| S⟩⟩⟩t (⟨⟨⟨□ A ||| 𝑐⟩⟩⟩, 𝛾A · [𝑐 ↦→S], ∅)

Pt (p, 𝛾, 𝜉)
C[S[□]] t (p[𝑐 [□]]], 𝛾 · [𝑐 ↦→S], 𝜉)

(a) abstracting copatterns

context-stuck

Γ ⊩c A : 𝜏 ⊲ ΓA;ΔA

Γ ⊩⟨⟨⟨A ||| □⟩⟩⟩: ¬¬𝜏 ⊲ ΓA;ΔA
open-stuck

Γ ⊩c A : 𝜏 ⊲ ΓA;ΔA

Γ ⊩⟨⟨⟨□ A ||| 𝑑⟩⟩⟩: ¬(𝜏⇝𝜐) ⊲ ΓA · [𝑑 ↦→¬𝜐];ΔA

Γ ⊩v A : 𝜏 ⊲ ΓA

Γ ⊩⟨⟨⟨□ A ||| 𝑑⟩⟩⟩: ¬(𝜏 → 𝜐) ⊲ ΓA · [𝑑 ↦→¬𝜐]; ∅
(b) copatterns typing rules.

Fig. 9. abstraction process of copatterns.

4.2 Abstract Interactive LTS
In the abstract interaction, the executing term (𝑃𝑟𝑜𝑝𝑜𝑛𝑒𝑛𝑡 ) will be represented by an LTS

configuration in order to be evaluated against an abstract environment (𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡 ) that
models all compatible program environments while exhibiting the interaction between

the two that gets obscured by plain syntax substitution. To this effect, the configurations
will carry an information component that keeps track of the history of the interaction. It
consists of a map between the names and the concrete code of codata that 𝑃𝑟𝑜𝑝𝑜𝑛𝑒𝑛𝑡 has
disclosed and rendered accessible to 𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡 .

We define next the abstract interactive LTS LAI that is given by (A,M,
m−→I).

4.2.1 configurations, moves and transitions.

configurations A ∋ I, J ::= ⟨I; 𝛾 ; 𝜉⟩ active state
| ⟨M; 𝛾 ; 𝛿⟩ passive state

moves M ∋ m := 𝑎𝑎𝑎.p⊕ | 𝑎𝑎𝑎.p⊖

The moves are given by the previously described abstract copatterns where the action 𝑎𝑎𝑎.p
is to be understood as the combination of an interaction handle 𝑎 and an input p: the

abstract codata 𝑎 belonging to the passive player is being probed with the active player’s
abstract copatern p.

, Vol. 1, No. 1, Article . Publication date: July 2018.



589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

A Game Semantics Study of Virtual Effects 13

The superscript ⊕ (resp. ⊖) is a convenient notation to indicate that 𝑃𝑟𝑜𝑝𝑜𝑛𝑒𝑛𝑡 (resp.

𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡 ) is the active player performing the move. We will sometimes range over these

polarized moves by p and o respectively.

Breaking down all the possible interactive transitions witnessed by 𝑎𝑎𝑎.p, we have:

𝑐𝑐𝑐.⟨⟨⟨ret A ||| □⟩⟩⟩⊕ returning a value to the abstract context 𝑐 [].
𝑐𝑐𝑐.⟨⟨⟨𝑟 [𝑒] ||| □⟩⟩⟩⊕ propagating 𝑒 and the delimiting continuation 𝑟

to the abstract context 𝑐 [].
𝑓𝑓𝑓 .⟨⟨⟨□ A ||| 𝑑⟩⟩⟩⊕ requesting the result of the application 𝑓 A in 𝑑 [].
𝜅𝜅𝜅.⟨⟨⟨□[ret A] ||| 𝑑⟩⟩⟩⊕ requesting the result of the computation 𝜅 [ret A] in 𝑑 [].
𝜅𝜅𝜅.⟨⟨⟨□[𝑟 [𝑒]] ||| 𝑑⟩⟩⟩⊕ delegating the handling or propagation of 𝑒 with its

delimiting continuation 𝑟 to 𝜅 and requesting the result in 𝑑 [].
After a series of internal reduction steps ↦→∗

op
, the active configuration reaches a normal

form. It performs a transition into an passive state where the codata in the corresponding

copattern is abstracted then disclosed or forwarded to the environment via the information

components.

A transition from a passive configuration admits branching. Indeed, since the program
environment is abstract and not fixed, it can use any of the disclosed information to

perform a move triggering a transition into an active configuration and the concretization
of a running computation.

The transitions as well as the underlying abstraction and concretization processes are

defined in fig. 11 and fig. 10, respectively.

For a compact presentation, we will abuse the notation of maps and substitution on 𝜉

when it is the constituting component 𝛿 that is intended instead.

Remark 2. As mentioned in section 3.2 where we have introduced ↦→op, the reduction ↦→fwd

captures a flow of information; that of effect propagation. A series of ↦→fwd reductions not

followed by an ↦→eval reduction results in an unhandled effect forwarded to the environment,

which in turn could potentially handle it, capturing the associated delimited continuation in

the process.

This information flow is a form of interaction between the program and its environment

consisting in inquiring whether the environment handles the effect or not. The abstract effect

and its enclosing evaluation context are provisionally forwarded as a fragment of the "would-

be" captured delimited continuation in case the environment cacthes the effect and handles

it. In case it does not, a pseudo copy-cat action (forwarding back the same effect but with an

extended evaluation conext) is expected instead.

By way of example, we will give an informal presentation of the interaction of a term
with a concrete program context, which will map to one possible interactive execution path
against an abstract environment in LAI.

5 From traces to handling structures
Consider the interaction of the term u := let𝑦= new E in {𝑓 (𝜆𝑥 .op ⟨⟩)}with h𝑦 (from

example ??) with the environment given by C := let 𝑓 =(𝜆𝑔.𝑔 v; ret tt) in [] was represented

, Vol. 1, No. 1, Article . Publication date: July 2018.



638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14

pure

Pt (p, 𝛾, ∅)
abstract(P(𝑎), ∅, _) t (𝑎𝑎𝑎.p, 𝛾, ∅)

effectful

⟨⟨⟨op v ||| S[□] ◦◦◦ F⟩⟩⟩t (p, 𝛾, 𝜉)
abstract(⟨⟨⟨op v ||| S[𝑎 []] ◦◦◦ F⟩⟩⟩, ∅, 𝜈) t (𝑎𝑎𝑎.p, 𝛾, 𝜉)

perform

⟨⟨⟨𝑒 ||| S[□] ◦◦◦ F[𝑟 ]⟩⟩⟩t (p, 𝛾, 𝜉)
abstract(⟨⟨⟨e ||| S[𝑎 []] ◦◦◦ F[𝑟 ]⟩⟩⟩, (𝑒, 𝑟, _), _) t (𝑎𝑎𝑎.p, 𝛾, 𝜉)

forward

(a) abstracting normal forms

pure/perform

concretize(𝑎𝑎𝑎.p, 𝛾, ∅) = p(𝛾 (𝑎))

forward

𝜉 = (𝑒, 𝑟, 𝛿) p =⟨⟨⟨𝜅 ::𝑟 [𝑒] ||| _⟩⟩⟩ P = p{𝛿 (𝑒)/𝑒}
concretize(𝑎𝑎𝑎.p, 𝛾, 𝜉) = P(𝛾 (𝑎))

(b) concretizing abstract normal forms

Fig. 10. the dualizing process.

by the following trace

su = 𝑓𝑓𝑓 .⟨⟨⟨□𝑔 ||| 𝑑⟩⟩⟩⊕ 𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑐⟩⟩⟩⊖ 𝑐𝑐𝑐.⟨⟨⟨𝜅 [𝑒] ||| □⟩⟩⟩⊕ 𝑑𝑑𝑑.⟨⟨⟨𝜅𝑐 ::𝜅 [𝑒] ||| □⟩⟩⟩⊖ 𝜅𝑐𝜅𝑐𝜅𝑐 .⟨⟨⟨□[ret 5] ||| 𝑑 ′⟩⟩⟩⊕

Now considering the term t := 𝑓 (𝜆𝑥 .5), that is contextually equivalent to u, and observing
how it interacts with the same environment C, we get:

⟨𝑐f [t], 𝜀,∅⟩
𝑓𝑓𝑓 .⟨⟨⟨□𝑔|||𝑑⟩⟩⟩⊕
−−−−−−−−→I ⟨[𝑔 ↦→ (𝜆𝑥.5); 𝑑 ↦→ 𝑐f [[]]]; ∅⟩
𝑔𝑔𝑔.⟨⟨⟨□ A|||𝑐⟩⟩⟩⊖
−−−−−−−−→I ⟨𝑐 [(𝜆𝑥.5)] A; [𝑔 ↦→ (𝜆𝑥.5); 𝑑 ↦→ 𝑐f [[]]]; ∅⟩
𝑐𝑐𝑐.⟨⟨⟨ret 5|||□⟩⟩⟩⊕
−−−−−−−−−→I ⟨[𝑔 ↦→ (𝜆𝑥.5); 𝑑 ↦→ 𝑐f [[]]]; ∅⟩
𝑑𝑑𝑑.⟨⟨⟨ret tt|||□⟩⟩⟩⊖
−−−−−−−−−→I ⟨𝑐f [ret tt], [𝑔 ↦→ (𝜆𝑥 .5); 𝑑 ↦→ 𝑐f [[]]]; ∅⟩
𝑐f𝑐f𝑐f .⟨⟨⟨ret tt|||□⟩⟩⟩⊕−−−−−−−−−−→I ⟨[𝑔 ↦→ (𝜆𝑥.5); 𝑑 ↦→ 𝑐f [[]]]; ∅⟩

that is an interaction witnessed by the trace st

st = 𝑓𝑓𝑓 .⟨⟨⟨□𝑔 ||| 𝑑⟩⟩⟩⊕ 𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑐⟩⟩⟩⊖ 𝑐𝑐𝑐.⟨⟨⟨ret 5 ||| □⟩⟩⟩⊕ 𝑑𝑑𝑑.⟨⟨⟨ret tt ||| □⟩⟩⟩⊖ 𝑐f𝑐f𝑐f .⟨⟨⟨ret tt ||| □⟩⟩⟩⊕

It is clear that su is not a trace generated by t, and st is not a trace generated by u, so
that their respective set of complete traces are incomparable. Therefore, a complete OGS

model requires a notion of equivalence coarser than equality of traces, that would identify

, Vol. 1, No. 1, Article . Publication date: July 2018.



687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

A Game Semantics Study of Virtual Effects 15

Eval

M ↦→eval N

⟨M; 𝛾⟩ eval−−−→I ⟨N; 𝛾⟩
(a) Internal evaluation

Px

abstract(Nf) t (𝑎𝑎𝑎.p, 𝛾p)

⟨Nf; 𝛾⟩
𝑎𝑎𝑎.p⊕

−−−→I ⟨I; 𝛾 ·𝛾p⟩ ⟨I; 𝛾⟩
𝑎𝑎𝑎.p⊖

−−−→I ⟨p[𝛾 (𝑎]); 𝛾⟩
Ox

(b) Pure moves

Forward

I
s

=⇒fwd J

I
s

=⇒
I
J

(c) Effect forwarding sequences

Forward

M ↦→fwd N

⟨M; 𝛾 ; 𝜉⟩ −→fwd ⟨N; 𝛾 ; 𝜉⟩

PHandle

M ↦→eval

⟨M; 𝛾 ; !!!𝛿⟩ ℎ𝑑𝑙⊕−−−→fwd ⟨M{𝛾}; 𝛾⟩ ⟨I; 𝛾 ; ???𝜉⟩ ℎ𝑑𝑙⊖−−−→fwd ⟨I; 𝛾 ·𝜉⟩
OHandle

(d) Internal effect manipulation

Peff

abstract(Nf, 𝛿) t (𝑎𝑎𝑎.p, 𝛾p, 𝜉)

⟨Nf; 𝛾 ; 𝛿⟩
𝑎𝑎𝑎.p⊕

−−−→fwd ⟨I; 𝛾 ·𝛾p; 𝜉⟩

concretize(𝑎𝑎𝑎.p, 𝛾, 𝜉) = (M, 𝛿)

⟨I; 𝛾 ; 𝜉⟩
𝑎𝑎𝑎.p⊖

−−−→fwd ⟨M; 𝛾 ; 𝛿⟩
Oeff

(e) Effectful moves

Fig. 11. transitions of the Abstract Interaction LTS

st and su.

𝑓𝑓𝑓 .⟨⟨⟨□𝑔 ||| 𝑐⟩⟩⟩⊕ 𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑑⟩⟩⟩⊖ 𝑑𝑑𝑑.⟨⟨⟨ret 5 ||| □⟩⟩⟩⊕ 𝑐𝑐𝑐.⟨⟨⟨ret tt ||| □⟩⟩⟩⊖
≃

𝑓𝑓𝑓 .⟨⟨⟨□𝑔 ||| 𝑐⟩⟩⟩⊕ 𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑑⟩⟩⟩⊖ 𝑑𝑑𝑑.⟨⟨⟨𝜅 [𝑒] ||| □⟩⟩⟩⊕ 𝑐𝑐𝑐.⟨⟨⟨𝜅𝑑 ::𝜅 [𝑒] ||| □⟩⟩⟩⊖ 𝜅𝑑𝜅𝑑𝜅𝑑 .⟨⟨⟨□[ret 5] ||| 𝑐′⟩⟩⟩⊕ 𝑐′𝑐′𝑐′.⟨⟨⟨ret tt ||| □⟩⟩⟩⊖

, Vol. 1, No. 1, Article . Publication date: July 2018.



736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16

⟨𝑐f [t2], 𝜀,∅⟩ eval−−−→I ⟨𝑐f [{𝑓 (𝜆𝑥.op ⟨⟩)}with h𝜄]; 𝜀; ∅⟩
𝑓𝑓𝑓 .⟨⟨⟨□𝑔|||𝑑⟩⟩⟩⊕
−−−−−−−−→I ⟨[𝜄 ↦→ E]; [𝑔 ↦→ (𝜆𝑥 .op ⟨⟩), 𝑑 ↦→ 𝑐f [{[]}with h𝜄]]; ∅⟩
𝑔𝑔𝑔.⟨⟨⟨□ A|||𝑐⟩⟩⟩⊖
−−−−−−−−→I ⟨𝑐 [(𝜆𝑥 .op⟨⟩) A]; 𝛾 ; ∅⟩

eval−−−→I ⟨𝑐 [op ⟨⟩]; 𝛾 ; ∅⟩
𝑐𝑐𝑐.⟨⟨⟨𝜅 [𝑒 ] |||□⟩⟩⟩⊕
−−−−−−−−−→I ⟨[𝜄 ↦→ E]; 𝛾 ; (!!!𝑒, op ⟨⟩, 𝜅, [𝜅 ↦→[]])⟩

𝑑𝑑𝑑.⟨⟨⟨𝜅𝑐 ·𝜅 [𝑒 ] |||□⟩⟩⟩⊖−−−−−−−−−−−−→I ⟨𝛾 (𝑑) [𝜅𝑐 ::𝜅 [op⟨⟩]]; 𝛾 ; (!!!𝑒, op ⟨⟩, 𝜅𝑐 ::𝜅, [𝜅 ↦→[]])⟩
ℎ𝑑𝑙⊕−−−→I ⟨𝑐f [{𝜅𝑐 ◦ [] [op⟨⟩]}with h𝜄]; 𝛾 ; ∅⟩
eval−−−→I ⟨𝑐f [{𝜅𝑐 [ret 5]}with h𝜄]; 𝛾 ; ∅⟩

𝜅𝑐𝜅𝑐𝜅𝑐 .⟨⟨⟨□[ret 5] |||𝑑 ′⟩⟩⟩⊕
−−−−−−−−−−−−−→I ⟨[𝜄 ↦→ E]; 𝛾 · [𝑑 ′ ↦→ 𝑐f [{[]}with h𝜄]]; ∅⟩

𝑑 ′𝑑 ′𝑑 ′ .⟨⟨⟨ret tt|||□⟩⟩⟩⊖
−−−−−−−−−−→I ⟨𝛾 (𝑑 ′) [ret tt]; 𝛾 ′; ∅⟩

eval−−−→I ⟨𝑐f [ret tt]; 𝛾 ′; ∅⟩
𝑐f𝑐f𝑐f .⟨⟨⟨ret tt|||□⟩⟩⟩⊕−−−−−−−−−−→I ⟨[𝜄 ↦→ E]; 𝛾 ′; ∅⟩

5.1 Trace equivalence is too fine
5.1.1 Analysis: handling structure.

• forward moves introduce a lot of redundancy (new names for the same continua-

tions)

• obscure the underlying handling structure

• it is worth restoring this handling structure in order to better understand what

happens

Let us scrutinize the previous example and observe what is really happening at each

step:

tt2
= 𝑓𝑓𝑓 .⟨⟨⟨□𝑔 ||| 𝑑⟩⟩⟩⊕

𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑐⟩⟩⟩⊖ (𝑓 𝑖𝑔. 𝑠𝑡𝑒𝑝1)
𝑐𝑐𝑐.⟨⟨⟨𝜅 [𝑒] ||| □⟩⟩⟩⊕ (𝑓 𝑖𝑔. 𝑠𝑡𝑒𝑝2)
𝑑𝑑𝑑.⟨⟨⟨𝜅𝑐 ::𝜅 [𝑒] ||| □⟩⟩⟩⊖ (𝑓 𝑖𝑔. 𝑠𝑡𝑒𝑝3)
𝜅𝑐𝜅𝑐𝜅𝑐 .⟨⟨⟨□[ret 5] ||| 𝑑 ′⟩⟩⟩⊕ (𝑓 𝑖𝑔. 𝑠𝑡𝑒𝑝4)
𝑑 ′𝑑 ′𝑑 ′.⟨⟨⟨ret tt ||| □⟩⟩⟩⊖ 𝑐f𝑐f𝑐f .⟨⟨⟨ret tt ||| □⟩⟩⟩⊕ (𝑓 𝑖𝑔. 𝑠𝑡𝑒𝑝5)

We observe that at (step 3), Opponent has no choice but to forward the effect 𝑒 and

that the move it makes is invisible from its perspective. Additionally, the continuation

starting correspondin to 𝑐 and delimited by 𝑑 . Therefore, 𝜅𝑐 is essentially nothing but this

delimited continuation repackaged, and if interrogated, it answers exactly what 𝑐 would

answer 𝑑 had it been interrogated instead.

, Vol. 1, No. 1, Article . Publication date: July 2018.



785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

A Game Semantics Study of Virtual Effects 17

Now if we squash the steps 2 and 3, into one unobservable move, we can rewrite this

trace as follows:

tt2
= 𝑓𝑓𝑓 .⟨⟨⟨□𝑔 ||| 𝑑⟩⟩⟩⊕

𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑐⟩⟩⟩⊖ (𝑓 𝑖𝑔. 𝑠𝑡𝑒𝑝1)
fwd(𝑐, 𝜅𝑐 , 𝑑)
𝜅𝑐𝜅𝑐𝜅𝑐 .⟨⟨⟨□[ret 5] ||| 𝑑 ′⟩⟩⟩⊕ (𝑓 𝑖𝑔. 𝑠𝑡𝑒𝑝4)
𝑑 ′𝑑 ′𝑑 ′.⟨⟨⟨ret tt ||| □⟩⟩⟩⊖ 𝑐f𝑐f𝑐f .⟨⟨⟨ret tt ||| □⟩⟩⟩⊕ (𝑓 𝑖𝑔. 𝑠𝑡𝑒𝑝5)

Knowing that if 𝜅𝑐 is interrogated in context given by 𝑑 ′, it should react the same way

like 𝑐 , it becomes clear why this trace is equivalent to tt1
, given that fwd(𝑐, 𝜅𝑐 , 𝑑) cannot

be observed, that 𝜅𝑐𝑛 plays the role of 𝑐 and that 𝑑 ′ plays the role of 𝑑 .
In the following, we make this observation formal through a coarser trace equivalence.

Definition 5.1 (fwd-transitions). We call a fwd-transition any two consecutive 𝑂𝐺𝑆

moves playing the same effect name. The second player’s move consists of forwarding the

effect of its opponent and giving them access to their continuation through a delimited

continuation name.

We will denote Ofwd-transitions and Pfwd-transitions by fwd(𝜅) and fwd(𝜅) respec-
tively, where 𝜅 is the delimited continuation name it involves.

The grammar of fwd-transition.

fwd(𝜅) ::= fwd(𝑐, 𝑑, 𝜅) | fwd(𝑐, (𝜅𝑑 , 𝑐′), 𝜅) | fwd(𝜅𝑐 , 𝑑, 𝜅)

fwd(𝑐, 𝑑, 𝜅𝑐) ::= 𝑐𝑐𝑐.⟨⟨⟨𝑟 [𝑒] ||| □⟩⟩⟩⊖ 𝑑𝑑𝑑.⟨⟨⟨𝜅𝑐 ::𝑟 [𝑒] ||| □⟩⟩⟩⊕
fwd(𝑐, (𝜅𝑑 , 𝑐′), 𝜅𝑐) ::= 𝑐𝑐𝑐.⟨⟨⟨𝑟 [𝑒] ||| □⟩⟩⟩⊖ 𝜅𝑑𝜅𝑑𝜅𝑑 .⟨⟨⟨□[𝜅𝑐 ::𝑟 [𝑒]] ||| 𝑐′⟩⟩⟩⊕
fwd(𝜅,𝑑, 𝜅′) ::= 𝜅𝜅𝜅.⟨⟨⟨□[𝑟 [𝑒]] ||| 𝑑⟩⟩⟩⊖ 𝑑𝑑𝑑.⟨⟨⟨𝜅′ ::𝑟 [𝑒] ||| □⟩⟩⟩⊕

Definition 5.2 (fwd-sequences). We will call a fwd-sequence any sequence of𝑂𝐺𝑆 moves

starting with a sequence of fwd moves and ending with a non-fwd move, i.e a sequence of

the form:

fwd(𝜅0) · · · fwd(𝜅𝑛) m
For 𝑋 ∈ {𝑂, 𝑃}, an 𝑋 -ending sequence will be called an Xfwd sequence.

Definition 5.3 (Trace well-parenthesisedness). Given two OGS tracest and s, we say that t

is conditionally well-parenthesised given s and writeWP(t | s) when:

⟨[] | ∅ | ∅⟩ s

=⇒wb ⟨𝜎 | 𝜂 | 𝜙⟩ t

=⇒wb ⟨𝜎 | 𝜂′ | 𝜙 ′⟩ for some𝜎, 𝜂, 𝜂′, 𝜙 and 𝜙 ′.

Remark 3. TODO: how this is different than the standard notion of a complete trace.

In order to reason modulo Ofwd-transitions, we will start by characterizing the shape of
traces differing by one and only one Ofwd-transition. For this we introduce the following
move substitution that captures how the suffix of a trace is changed if oneOfwd-transition
is suitably removed. It depends on a move o= ⟨⟨⟨𝜅 [A] ||| 𝑑⟩⟩⟩ that features the resumption

name 𝜅 that 𝑃𝑟𝑜𝑝𝑜𝑛𝑒𝑛𝑡 has introduced in the Ofwd-transition fwd(𝜅), because if fwd(𝜅)
is to be removed from the trace then so should 𝜅 and 𝑑 .

, Vol. 1, No. 1, Article . Publication date: July 2018.



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18

Definition 5.4 (Move substitution). Wedefine the trace-dependentmove substition 𝜕(fwd(𝜅), o)
by pattern-matching on fwd(𝜅):
𝜕(fwd(𝑐, 𝑑, 𝜅𝑐), ⟨⟨⟨𝜅𝑐 [A] ||| 𝑑 ′⟩⟩⟩) := [⟨⟨⟨𝜅𝑐 [A] ||| 𝑑 ′⟩⟩⟩ ↦→⟨⟨⟨A ||| 𝑐⟩⟩⟩] · [𝑑 ′ ↦→𝑑]
𝜕(fwd(𝑐, (𝜅𝑑 , 𝑐′), 𝜅𝑐), ⟨⟨⟨𝜅𝑐 [A] ||| 𝑑 ′⟩⟩⟩) := [⟨⟨⟨𝜅𝑐 [A] ||| 𝑑 ′⟩⟩⟩ ↦→⟨⟨⟨A ||| 𝑐⟩⟩⟩] · [⟨⟨⟨B ||| 𝑑 ′⟩⟩⟩ ↦→⟨⟨⟨𝜅𝑑 [B] ||| 𝑐′⟩⟩⟩]
𝜕(fwd(𝜅,𝑑, 𝜅′), ⟨⟨⟨𝜅′ [A] ||| 𝑑⟩⟩⟩) := [⟨⟨⟨𝜅′ [A] ||| 𝑑⟩⟩⟩ ↦→⟨⟨⟨𝜅 [A] ||| 𝑑⟩⟩⟩]
The next definition will relate two environments whose intensional behaviours are

different; in that one captures an additional fragment of the program’s continuation while

the other does not, but at the same time this difference has no bearing on their observable
behavior.

Definition 5.5 (O-canonical form). With the understading that writing t1(s{𝛿})t2 means

that the substitution 𝛿 acts on the subtrace s, we define the O-canonical form of a trace t

as its normal form w.r.t. the following rewriting rule:

WP(t1 | t) 𝜅 ∉ supp(t1) ∪ supp(t2) 𝛿 = 𝜕(fwd(𝜅), ⟨⟨⟨𝜅 [A] ||| 𝑑⟩⟩⟩)
t fwd(𝜅) t1 ⟨⟨⟨𝜅 [A] ||| 𝑑⟩⟩⟩ t2 →𝑜 t t1 (⟨⟨⟨𝜅 [A] ||| 𝑑⟩⟩⟩ t2{𝛿})

We will write [t]𝑜 for t′ s.t t →∗
𝑜 t

′ ̸→𝑜 .

This rewriting rule relates two equivalent terms, in which the same handler has been

installed in two different places. We can illustrate this by taking the environment’s per-

spective, where K𝑖 ’s are the environment’s evaluation contexts, h is its handler such that

op∈hdl(h) and the 𝜅𝑖 ’s are the program’s fragments.

({K1}with h) ◦ 𝜅1 ◦ K2 ◦ 𝜅2 ◦ K[op v] ≃𝑐𝑡𝑥−−−→𝑜 K1 ◦ 𝜅1 ◦ ({K2}with h) ◦ 𝜅2 ◦ K[op v] (1)

If hop = {op𝑥 𝑦 ↦→ 𝑦 w}, for example, then the normal form w.r.t.→𝑜 would correspond to

the following term:

K1 ◦ 𝜅1 ◦ K2 ◦ 𝜅2 ◦ K[ret w{𝑥 ↦→ v}]
The condition 𝜅 ∉ supp(t2) ∪ supp(t′

2
) along with the presence of the move ⟨⟨⟨𝜅 [A] ||| 𝑑⟩⟩⟩

guarantees that 𝜅 is used linearly. The condition WP(t1 | t) ensures that if fwd(𝜅)
appears in a Ofwd-sequence propagating the same effect 𝑒 , then it is the outermost one

as illustrated in (1) and that it is used in a well-scoped manner.

Definition 5.6 (fwd-commutation).

WP(s | t1) 𝜅 ∉ supp(s)
t1 s fwd(𝜅) t2 ℛ𝑜 t1 fwd(𝜅) s t2

Let ℛ𝑜
∗
be the transitive closure of ℛ𝑜 .

If the previous relation→𝑜 is concerned with the placement of handlers, the relation

ℛ𝑜 , on the other hand, is concerned with the place where the effect has been performed.

To illustrate this, consider the equivalent terms T1 = E[w1 ⟨⟩] and T2 = E[w2 ⟨⟩] sucht
that I; Γ, 𝑓 :1→Z ⊢c T1, T2 and I(𝜄) = {get :1→Z; set :Z→1}, where

w1 = 𝜆_. let𝑥 = 𝑓 ⟨⟩ in let𝑦 = get ⟨⟩ in ret 𝑥+𝑦

, Vol. 1, No. 1, Article . Publication date: July 2018.



883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

A Game Semantics Study of Virtual Effects 19

and

w2 = 𝜆_. let𝑥 = get ⟨⟩ in let𝑦 = 𝑓 ⟨⟩ in ret 𝑥+𝑦
If we fix an observing environment and consider the two corresponding interaction traces,

we observe that:

⟦T1⟧ogs ∋ t 𝑓𝑓𝑓 .⟨⟨⟨□ ⟨⟩ ||| 𝑑⟩⟩⟩⊕ s′𝑑𝑑𝑑.⟨⟨⟨ret A ||| □⟩⟩⟩⊖ fwd(𝜅) q
if and only if

⟦T2⟧ogs ∋ t fwd(𝜅) 𝑓𝑓𝑓 .⟨⟨⟨□ ⟨⟩ ||| 𝑑⟩⟩⟩⊕ s′𝑑𝑑𝑑.⟨⟨⟨ret A ||| □⟩⟩⟩⊖ q
By writing s for the t-well-parenthesised sequence 𝑓𝑓𝑓 .⟨⟨⟨□ ⟨⟩ ||| 𝑑⟩⟩⟩⊕ s′𝑑𝑑𝑑.⟨⟨⟨ret A ||| □⟩⟩⟩⊖ we see

how the commuting of s and fwd(𝜅) does not affect the extensional behavior.
Definition 5.7 (fwd-equivalence). Two traces t and t

′
are said to be Ofwd-equivalent, i.e

equivalent up-to Ofwd-transitions, and written t ≃𝑜 t
′
when [t]𝑜 ℛ𝑜

∗ [t′]𝑜 .
Dually, we say that two traces t and t

′
are Pfwd-equivalent, and write t ≃𝑝 t

′
when

[t⊥]𝑜 ℛ𝑜
∗ [t′⊥]𝑜 .

Definition 5.8 (Trace preorder).

Trogs(G) ⪯𝑡𝑟 Trogs(H) :⇐⇒ ∀t∈ Trogs(G). ∃t′ ∈ Trogs(H) s.t. t ≃𝑝 t
′

5.2 Handling structures
As we have seen in the definition of trace equivalence.

• forward moves introduce a lot of redundancy (new names for the same continua-

tions)

• obscure the underlying handling structure

• it is worth restoring this handling structure in order to better understand what

happens

In that section, we proceeded by eliminating a only a certain subset of fwd-transitions
and their corresponding delimited continuation invokations. That the had the benefit

that the resulting squences remain legal traces (i.e. sequences that could potentially be

generated by LOGS).

Continuing our effort to eliminate the redundancy introduced by forward transitions,

we revisit the role of delimited continuation names. These names are merely semantic

artefacts—they are not part of the actual surface language. Once we remove their occur-

rences from the generated traces, a more natural and intrinsic structure begins to emerge.

This underlying organization, which was previously obscured by syntactic overhead, is

what we term handling structures. In this sense, the approach of transforming traces by

relaxing or removing the linearity and well-parenthesisedness side conditions, in order

to obtain canonical forms is, without question, the right direction. However, it comes

at a cost: the resulting sequences, while more canonical in spirit, no longer conform to

the legality constraints of OGS traces (they are not necessarily generated by LOGS). To

account for this, we introduce handler structures as a new formal device. These structures

allow us to represent the essential phenomenon of capture—a central aspect of effectful

computation—while simultaneously reducing redundancy. More importantly, they recover

the underlying semantics of handling, which had been obfuscated by the machinery of

, Vol. 1, No. 1, Article . Publication date: July 2018.



932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20

delimited continuation names and the complexity of the the justification structure they

introduce.

Remark 4. Algebraic effects and handlers are expressive enough to capture paradigms

such as asynchronicity and cooperative green threads. Given this, it is perhaps unsurprising

that the resulting semantic structures naturally exhibit patterns where “events” give rise

to—or enable—other events, and these in turn can be observed as independent. This emergent

structure, arising from the justification structure, is reminiscent of event structures commonly

used to model concurrency and parallelism. It stands in contrast to the traditional approach of

modeling interaction via interleaving or strictly alternating sequences of moves, as seen in

conventional game semantics.

We motivate the structure by revisiting the previous example.

tt2
= 𝑓𝑓𝑓 .⟨⟨⟨□𝑔 ||| 𝑑⟩⟩⟩⊕

𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑐⟩⟩⟩⊖ (𝑓 𝑖𝑔. 𝑠𝑡𝑒𝑝1)
𝑐𝑐𝑐.⟨⟨⟨𝜅 [𝑒] ||| □⟩⟩⟩⊕ (𝑓 𝑖𝑔. 𝑠𝑡𝑒𝑝2)
𝑑𝑑𝑑.⟨⟨⟨𝜅𝑐 ::𝜅 [𝑒] ||| □⟩⟩⟩⊖ (𝑓 𝑖𝑔. 𝑠𝑡𝑒𝑝3)
𝜅𝑐𝜅𝑐𝜅𝑐 .⟨⟨⟨□[ret 5] ||| 𝑑 ′⟩⟩⟩⊕ (𝑓 𝑖𝑔. 𝑠𝑡𝑒𝑝4)
𝑑 ′𝑑 ′𝑑 ′.⟨⟨⟨ret tt ||| □⟩⟩⟩⊖ 𝑐f𝑐f𝑐f .⟨⟨⟨ret tt ||| □⟩⟩⟩⊕ (𝑓 𝑖𝑔. 𝑠𝑡𝑒𝑝5)

Ultimately, trace equivalence amounts to identifying handling structures modulo flat-

tening.

Definition 5.9 (h-struct). We define the grammar of handling structures as follows:

t ::= t ogs trace

| t ⟦t⟧ t capturing

| t ⟨t, . . . , t⟩ branching

We will often write these structures vertically as trees (execution top to bottom).

* The first constructor ⟦t⟧ is to be understood as a captured delimited trace, and that,

if ⟦t⟧ occurs in a structure like so 𝑡1⟦𝑡⟧𝑡2 = 𝑠
then s is a second-order trace in which ⟦𝑡⟧ is a second-order move. Higher-order traces

are to be understood similarly.

These structures represent extended trace forms. The ⟦t⟧ construct models a capture of

a delimited continuation corresponding to t, and the ⟨t0, ..., t𝑛⟩ form models branching

execution where multiple interactions stem from a common prefix. We frequently render

these handling structures vertically as trees, representing execution from top to bottom,

and left to right for branching. The constructor ⟦t⟧ is interpreted as a captured delimited

trace. When this appears within a structure, say t = t0 ⟦t⟧ t1, we interpret the entire

sequence t as a second-order trace, in which ⟦t⟧ plays the role of a second-order move.

This reasoning generalizes naturally to higher-order handling structures, where h-structs

themselves become the content of moves at increasingly nested levels. The branching

form t ⟨t0, ..., t𝑛⟩ captures the idea of an execution trace t followed by several "playouts"

or invocations of the last captured structure, where each one is a trace or a complex

handling structure in its own right. These branches represent observationally distinct, but

semantically related, and ordered continuation invocations. We sometimes visualize this

structure as a tree:

, Vol. 1, No. 1, Article . Publication date: July 2018.



981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

A Game Semantics Study of Virtual Effects 21

⟨𝑐f ⟩⊖

𝑓𝑓𝑓 .⟨⟨⟨□𝑔 ||| 𝑑⟩⟩⟩⊕

𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑐⟩⟩⟩⊖

Fig. 12. subfigure

step 1

⟨𝑐f ⟩⊖

𝑓𝑓𝑓 .⟨⟨⟨□𝑔 ||| 𝑑⟩⟩⟩⊕[
𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑐′⟩⟩⟩⊖

]
•

Fig. 13. subfigure

effect forwarding 1

⟨𝑐f ⟩⊖[
𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑐⟩⟩⟩⊖
𝑓𝑓𝑓 .⟨⟨⟨□𝑔 ||| 𝑑⟩⟩⟩⊕

]
𝑐𝑐𝑐.⟨⟨⟨ret 5 ||| □⟩⟩⟩⊕ •

Fig. 14. subfigure

effect forwarding 2

⟨𝑐f ⟩⊖

[
𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑑⟩⟩⟩⊖
𝑓𝑓𝑓 .⟨⟨⟨□𝑔 ||| 𝑐⟩⟩⟩⊕

]

𝑐𝑐𝑐.⟨⟨⟨ret 5 ||| □⟩⟩⟩⊕

𝑑𝑑𝑑.⟨⟨⟨ret tt ||| □⟩⟩⟩⊖
•

Fig. 15. subfigure

invoking the continuation

⟨𝑐f ⟩⊖[
𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑑⟩⟩⟩⊖
𝑓𝑓𝑓 .⟨⟨⟨□𝑔 ||| 𝑐⟩⟩⟩⊕

]
𝑑𝑑𝑑.⟨⟨⟨ret 5 ||| □⟩⟩⟩⊕

𝑐𝑐𝑐.⟨⟨⟨ret tt ||| □⟩⟩⟩⊖
•

𝑐f𝑐f𝑐f .⟨⟨⟨ret tt ||| □⟩⟩⟩⊕

\

Fig. 16. subfigure

exiting the handling scope

Fig. 17. Five subfigures arranged in 3-top/2-bottom layout

* A branching 𝑡 ⟨𝑡0, . . . , 𝑡𝑛⟩ will be sometimes represented as follows:

𝑡

𝑡0 𝑡𝑛

Each branch (e.g., 𝑡0 through 𝑡𝑛) denotes an independent attempt or path of interaction

that stems from the same prefix t.

, Vol. 1, No. 1, Article . Publication date: July 2018.



1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22

⟨𝑐f ⟩⊖

[
𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑑⟩⟩⟩⊖
𝑓𝑓𝑓 .⟨⟨⟨□𝑔 ||| 𝑐⟩⟩⟩⊕

]

𝑑𝑑𝑑.⟨⟨⟨ret 5 ||| □⟩⟩⟩⊕

𝑐′𝑐′𝑐′.⟨⟨⟨ret tt ||| □⟩⟩⟩⊖

𝑐f𝑐f𝑐f .⟨⟨⟨ret tt ||| □⟩⟩⟩⊕

≃𝑡𝑟

⟨𝑐f ⟩⊖

𝑓𝑓𝑓 .⟨⟨⟨□𝑔 ||| 𝑐⟩⟩⟩⊕

𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑑⟩⟩⟩⊖

𝑑𝑑𝑑.⟨⟨⟨ret 5 ||| □⟩⟩⟩⊕

𝑐𝑐𝑐.⟨⟨⟨ret tt ||| □⟩⟩⟩⊖

𝑐f𝑐f𝑐f .⟨⟨⟨ret tt ||| □⟩⟩⟩⊕

Fig. 18. trace equivalence, revisited.

Example 5.10. A basic example is of the shape:

𝑡

⟦𝑡0⟧

𝑠0 𝑠𝑛
where 𝑡, 𝑡0, 𝑠0, . . . , 𝑠𝑛 are OGS sequences.

representing the interaction in which Opponent captured the delimited sequence 𝑡0 via a

handler and played it 𝑛 times before resuming the continuation. This structure models an

interaction in which the Opponent captures a delimited subtrace t0 via a handler and then

invokes it multiple times—resulting in trace sequences s0 through s𝑛—before resuming the

overall continuation.

concatenation. As we will see the branching is only an observationally branching struc-

ture from the point of view of the player that did not trigger it (observational independence),

on the other hand, the player responsible for it (the player that handled the effect) these

branches are sequential and ordered.

We chose to order them from left to right. Concatenation is therefore denoted 𝑡1 − 𝑡2 or
simply 𝑡1𝑡2 is attaching 𝑡2 to the left-most branch. It is defined recursively as follows:

It is important to note that branching, as represented in handler structures, is ob-

servational. That is, it appears as nondeterministic or parallel branching only from the

perspective of the player not responsible for triggering the handler. For the handling

player, the one who performed andhandled the effect, the branches are seen as ordered

, Vol. 1, No. 1, Article . Publication date: July 2018.



1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

A Game Semantics Study of Virtual Effects 23

t1 − t2 ::= t1 t2

𝑡

⟦𝑡0⟧

𝑠0 𝑠𝑛 − 𝑡2 ::=

𝑡

⟦𝑡0⟧

𝑠0 𝑠𝑛 − 𝑡2

Fig. 19. concatenation of handling structures.

and sequential. This asymmetry reflects the inherent observational structure of algebraic

effect handling.

Remark 5. Notice that the concatenation operation proceeds within the handler structure—it

traverses downward into its interior rather than simply grafting a new subtree at a leaf. This

behavior is reminiscent of the zipper data structure, which enables navigation and insertion

deep within hierarchical trees. A subtree of the form ⟦𝑡⟧ does not necessarily correspond to an

actual trace t that was captured at runtime via suspension or effect capture. Instead, it should

be viewed as a static artifact—a structural component obtained purely through the rewriting

process. G-note: The outcome of the rewriting process is a tree structure with a canonical form,

up to permutation of its branches. This means that while the ordering of parallel branches

may vary, the overall computational structure remains semantically invariant.

Open handling structure. Once forward transitions and resumptions are eliminated from

the trace, what remains is the handler structure—a tree capturing the essential control

flow. This structure offers a refined view of effectful programs: rather than treating them

as sequences, we model them as open handling structures—rooted trees in which leaves

may be unbound branches or dangling prompts. These represent suspended computations

or points of interaction that have yet to be resolved or resumed.

In order to represent computations/traces whereby the handling is still ongoing, we

introduce an open branching structure

t ⟨t0, . . . , t𝑛⟩ or, diagrmatically

t

t0

t𝑛

•

to indicate that the possibility of re-playing the captured delimited continuation by the

handler is still there.

Just as it is standard in game semantics to refer to incomplete traces — interactions

where some questions remain unanswered, open handling structures encode not only such

interactional incompleteness, but also the partial handling of effects. Specifically, they

signal that the handling of the last performed effect has not been fully resolved, and that

the possibility of opening a new branch, i.e. of initiating a further resumption invokation,

remains enabled.

, Vol. 1, No. 1, Article . Publication date: July 2018.



1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24

Definition 5.11. We will define the opening operator (□)• as follows:

(t)• := t • i.e. t

•
(1)

(t ⟨t0, . . . , t𝑛⟩)• := t⟨t0, . . . , t𝑛, •⟩ (2)

(t s)• := t(s)• (3)

Pointer structure/notation. We now turn our attention to the underlying pointer structure,

which plays a critical role in characterizing what it means to close an open handler

structure. This will be the final conceptual ingredient required to formally relate OGS

traces to their corresponding handler structures.

Pointer annotations within the trace serve as semantic breadcrumbs: they allow us

to reconstruct the nesting structure of effect handlers. Using these annotations, we can

identify which portions of the computation have been captured—corresponding to sub-

trees—and how resumptions link back to the precise handler contexts in which effects

were handled.

We will lift the pointer notation from moves, to traces then handling structures.

Definition 5.12 (pointer notation). The following definition is nothing but handy and less

verbose notation that exposes the increasingly nested justification structure:

o = 𝑎𝑎𝑎.p p =𝑏𝑏𝑏.q 𝑏 ∈ supp(p) \ supp(t0)
t0 o t1 p t2

m0 = 𝑎𝑎𝑎.p m1 =𝑏𝑏𝑏.q 𝑏 ∈ supp(p) \ supp(t0) t1 =m0 s1 t2 = s0 m1

t0 t1 t2 t3

m0 = 𝑎𝑎𝑎.p m1 =𝑏𝑏𝑏.q 𝑏 ∈ supp(p) \ supp(t0) t0 t1 t2 t3

t0 ⟦t1⟧ t2 t3

t ⟦r⟧ t0 s𝑖 t𝑖+1 t𝑛+1

t ⟦r⟧ t0 ⟨s0 t1, . . . , s𝑖 t𝑖+1, . . . , s𝑛 t𝑛+1⟩

, Vol. 1, No. 1, Article . Publication date: July 2018.



1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

A Game Semantics Study of Virtual Effects 25

Example 5.13 (archetypical h-struct).

t

[𝑟 ]⊚

s0

. . .

t0 t1 t𝑘 . . . t𝑛

• • • •

From traces to handling structures
To recover the handling structure representation of a flat trace, we introduce a contextual

rewriting relation ↩→fwd that systematically eliminates fwd-sequences and delimited

continuation names from handling structures. In doing so, we expose the latent structure

of effect handling.

h-redex. An h-redex is an h-struct of the form

r ®fwd(𝑟 )t0 s0 t1 . . . s𝑛 t𝑛+1

that satisfies the following conditions:

• ∀𝑖 .
↶
t𝑖 ∧ ∀𝜅 ∈ supp(𝑟 ), 𝜅 ∈ supp(t𝑖).

• 𝑟 = 𝜅 ◦ 𝑟 ′ ◦ κ and ∀𝑖 . ∃p, q, s0

𝑖 s
1

𝑖 . s𝑖 =𝜅𝜅𝜅.p s
0

𝑖 κκκ.q s
1

𝑖

We often use the notation r ®fwd(𝑟 ) t0 (s0; t1 | · · · s𝑛; t𝑛+1) for the redex r given by

r ®fwd(𝑟 ) t0 (s0; t1 | · · · | s𝑛 ; t𝑛+1).

reducible contexts. Since the rewriting could occur in any arbitrary sub-structure, we

will define rewriting contexts akin to lean contexts in 𝜆-calculus. These are nothing but

handling struct. with a single hole. Because rewriting may take place at arbitrary depths

within a handler structure, we define rewriting contexts in the spirit of evaluation contexts

from 𝜆-calculus. These contexts are simply handler structures with a single hole, i.e. places
where rewriting can be applied without loss of generality. What sets the apart from

standard evaluation contexts, is that the rewriting rule is not defined as root relation on

redexes which is then lifted to arbitrary h-structs via reduction contexts inside which the

reduction occurrs and that remain unchanged. The h-struct reducible context may also be

affected by the elimination of the fwd-transition they enclose.

Remark 6. This is explained by the fact that the considered h-redexes capture a well-

behaved use of continuations corresponding to well-scoped handlers described in [Xie et al.

, Vol. 1, No. 1, Article . Publication date: July 2018.



1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26

2020] . Since we are dealing with arbitrary handlers, the captured (delimited) continuation

may escape its original scope by being "smuggled" inside a returned value, e.g. under a 𝜆-

abstraction. This non-scoped use occurrs outside the h-redex, hence the rewriting of contexts

in order to eliminate delimited continuation names from the h-struct.

H ::=[] | t ⟦H⟧ t | t ⟨t0, . . . , t𝑖 ,H , t𝑖+1, . . . , t𝑛⟩ (𝑛 ∈ N)

Forward elimination rule. Reductions are labeled with a move substitution 𝛿 and are

given by:

root

t = B𝑟 (⟦r⟧ •, s′) s
′ = s{𝛿}

r ®fwd(𝑟 ) s 𝛿
↩−→fwd ⟦r⟧ t

lift

t
𝛿
↩−→fwd t

′ H ′ =H{𝛿}

H [t] 𝛿
↩−→fwd H ′ [t′]

lift

r
𝛿
↩−→fwd r

′ H ′ =H{𝛿}

H [r] 𝛿
↩−→fwd H ′ [r′]

B𝑟 (⟦r⟧ (t)•,m s) :=


B𝑟 (r (t)•m, t) if r (t)•m
B𝑟 (r (t[m])•, t) if r (t)•m
B𝑟 (r (t[m])•, t) if r (t)•m

Confluence and normalization: This rewriting system enjoys both confluence and strong

normalization: no matter the order in which rewrite steps are applied, the process always

terminates in a unique normal form. This normal form is canonical—up to permutations

of parallel branches—capturing the essential computational structure while abstracting

from syntactic artifacts. This establishes the key result: every handler structure admits a

canonical representative that can be systematically reconstructed from traces through the

rewriting process. This form serves as a normal representative in the space of equivalent

traces.

Definition 5.14. Given an OGS trace t, we will write t
†
for the fwd-free handling structure

such that:

t ↩→∗
fwd t

† ̸↩→fwd

Remark 7. Unless stated otherwise, whenever we say handling structure, we assume that it

is an OGS one, i.e., it can be obtained from an OGS trace via the rewriting rule ↩→fwd.

Player’s behaviour, semantically: Fibers and Interaction Trees
As we will see in later sections, branches arising from a player-controlled handlers are

considered independent from the perspective of its opponent. Each such branch reflects

a distinct point of disclosure or interaction initiated by this player. Accordingly, it is

, Vol. 1, No. 1, Article . Publication date: July 2018.



1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

A Game Semantics Study of Virtual Effects 27

natural to view a handling structure as comprising the aggregate behavior of opponent —

assembled from the separate behaviors associated with each independent branch. The

partial semantics of Opponent’s behaviour (exposed by the/its interaction witnessed by t)

are thus captured through these constituent threads of interaction.

In scenarios where actual effects are absent, we refer to these branching substructures

as fibers—in analogy to lightweight threads or “green threads” in concurrent programming.

Each fiber represents a potential line of interaction initiated by the Opponent.

We first present a simple illustrative example to build intuition, before formalizing the

notion of fibers and their composition.

Fibers
We define a function F 𝑖𝑏 : Trogs → ℘(Trogs) which maps each handling structure to the

set of its constituing fibers—that is, its independent substructures corresponding to all

the possible interaction it "subsumes". F 𝑖𝑏 (t) then denotes the set of traces embedded

in the handler structure t. These are obtained by linearizing each branch or subtree, and

collectively represent all possible sequential executions contained within t.

Definition 5.15 (O-fibers). O-fibers associated to an h-struct is given inductively by:

F 𝑖𝑏 (H [⟦r⟧ t0 (s0; t1 || · · · || s𝑛+1)]) :=
⋃

{H [F 𝑖𝑏 (t0)⟦r⟧s𝑖] | 0 ≤ 𝑖 ≤ 𝑛}

Interaction trees
Interaction trees are defined from handling structures and that partially capture the

behaviour of a player — that is the behaviour of all code(s) it disclosed to it opponent.

A function 𝑓 disclosed as an abstract name 𝑓 , its behaviour in the abstract will be

described by the the introduction tree, denoted I(𝑓 , t), capturing its rection to different

inputs from the interaction represented by t:

𝑓

R(o1, t) · · · R(o𝑛, t)
A1

A𝑛

where the edges coming out of the node are labeled with the function arguments A𝑖 s. t.
𝑓𝑓𝑓 .⟨⟨⟨□ A𝑖 ||| _⟩⟩⟩ ∈ t and R(o𝑖 , t) corresponds to the tree representing the reaction of 𝑓 to this

question.

R(o𝑖 , t) is either a leaf of the shape
⟨⟨⟨ret v ||| 𝑑⟩⟩⟩⊖

where v is a positive value or or a reac-

tion that introduces new abstract names to the interaction

ppp.𝑎

I(𝑎1, t) · · · I(𝑎𝑛, t)
where, for 𝑖 ∈ {1, . . . , 𝑛}, 𝑎𝑖 ∈ supp(p)
In the presence of actual state effects, such a tree with unordered branches becomes

insufficient, since a a name 𝑎 may respond differently to the same input, this violating

functionality.

In ourmodel, while observational innocence—the inability to distinguish between certain

interactions externally, can be broken, virtual innocence is preserved. This means that the

, Vol. 1, No. 1, Article . Publication date: July 2018.



1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28

internal structure remains deterministic and principled, even when observabl (external)

behavior diverges.

We give a formal definition in Figure 20.

Reaction trees R(ppp.𝑎,h) := {I(𝑏,h) | 𝑏 ∈ supp(p)}

Introduction trees I(𝑓 ,h) := {⟨A,R(o,h)⟩ | 𝑓𝑓𝑓 . ⟨⟨⟨□ A ||| 𝑐⟩⟩⟩⊕ o ⊏ h}
I(𝑐,h) := {⟨A,R(o,h)⟩ |⟨⟨⟨ret 𝑐 ||| A⟩⟩⟩⊖ qqq.𝑏⊖ ⊏ h}⋃{⟨𝜂, F (𝜂, t)⟩ | . . .}

Handling Forests F (𝜂,h) := ⟨R(o0,h),𝜅𝜅𝜅. ⟨⟨⟨ret𝑛0 ||| [□]⟩⟩⟩, . . .𝜅𝜅𝜅. ⟨⟨⟨ret𝑛𝑘 ||| [□]⟩⟩⟩,R(o𝑘+1,h)⟩
where ⟦h⟧𝜂t0(𝜅𝜅𝜅. ⟨⟨⟨ret𝑛0 ||| [□]⟩⟩⟩ s0; t1 || · · · || 𝜅𝜅𝜅. ⟨⟨⟨ret𝑛0 ||| [□]⟩⟩⟩ s𝑘 ; t𝑘+1) ⊑ h

(a) reaction trees

Fig. 20. Definition of Interaction Trees

Definition 5.16 (OGS tree). Given a definableOGS h-structh, we define the corresponding

definability tree as follows:

T [h] := {I(𝑎,h) | ppp.𝑏⊖ ⊏ h ∧ 𝑎 ∈ supp(p)}
We will use the powerset notation ℘(T ) to refer to the set of (reaction and introduction)

sub-trees of T . Given a definability tree S = T [t], we will denote by S/𝑎 and S/ o the
sub-trees I(𝑎, t), R(o, t) ∈ ℘(S), respectively.
Lemma 5.17 (Innocent trees). Given an O-innocent definable handling structure h, then

for any introduction sub-tree I ∈ ℘(T [h]):
Definition 5.18 (discordant trees). Two interaction trees T , S are said to be discordant

when there exists a name 𝑎, an absract value A and two introduction sub-trees T/𝑎 and S/𝑎
such that:

⟨A,R⟩ ∈ T/𝑎 ∧ ⟨A,R′⟩ ∈ S/𝑎 ∧ R ≠ R′

Concordant trees have a lattice-like structure, we exhibit this through the following

partial order and the following operation on trees that constructs an upper bound.

Definition 5.19 (dependent-approximation). where ⪯T is defined inductively on introduc-

tion and reaction trees:

I1 ⪯T I2 :⇐⇒ ∃I′
1
⊆ I2, I1 = {⟨A,R⟩ | ⟨A,R′⟩ ∧ R ⪯T R′}

R1 ⪯T R2 :⇐⇒ R1 = {⟨𝑎,I⟩ | ∃ ⟨𝑎,I′⟩ ∈ R2.I ⪯T I′}
Definition 5.20 (tree grafting). We define the tree grafting operator on concordant trees

⊛ as follows:

T1 ⊛ T2
:=


T := T/𝑎 ⊛ S if S = R(𝑎, _)
T1 ∪ T2 if ∃𝑎. T𝑖 = T/𝑎
undefined otherwise

, Vol. 1, No. 1, Article . Publication date: July 2018.



1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

A Game Semantics Study of Virtual Effects 29

Lemma 5.21. Given an intrinsically visible and innocent h-struct t we have:

(1) ∀s1, s2 ∈ F 𝑖𝑏 (t), s1 and s2 are concordant

(2) T [t] = ⊛
s∈F𝑖𝑏 (t)

T [s]

This property states the behaviour of a player interacting with another player that uses

effect handlers can be seen as a sum of behaviours against independent yet concordant

players (each represented by an uniplexed fiber).

This paves the way to the next property on traces / A-statutes of ⊑-saturation which

entails that in the absence of actual effects, it is not possible to single out a single execution

truth.

Definition 5.22 (Environment dependent approximation). Given two OGS traces t1, t2 ∈
Trogs, we say that t1 approximates t2 and we write:

t1 <𝑜 t2 :⇐⇒ T [t1] ⪯T T [t2]

Lemma 5.23 (O-staturation). Given an OGS configuration G and a trace t ∈ Tr(G), we
have:

(1) s <𝑜 t implies s ∈ Tr(G)
(2) s ≃𝑜 s implies s ∈ Tr(G)

Lemma 5.24 (Double eqivalence). Let t, t
′
and s be traces satisfying t ≃𝑜 s ≃𝑝 t

′
. There

exists a trace s
′
such that t ≃𝑝 s

′ ≃𝑜 t
′
.

6 The OGSmodel
The OGS LTS (O, M, −→ogs) is the transition system that can generate the interaction

traces
2
compatible with what our language (Λeff, ↦→op) permits.

It is defined as the product of LAI, LT and Lwb where the underlying labelled transitions

systems are synchronised on M ∪ {ℎ𝑑𝑙⊕, ℎ𝑑𝑙⊖}. The configurations in O satisfy some

conditions that guarantee the well-typedness of LAI; in that 𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡 and 𝑃𝑟𝑜𝑝𝑜𝑛𝑒𝑛𝑡

agree on types during their interaction, in addition to ensuring that 𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡 ’s use of

continuations is well-bracketed.

6.1 The OGS LTS
In the following we will denote ⟨I || T || W⟩ ∈ A×T ×W any triple of configurations

satisfying I ⦂ T and Compat(I, W), where the second proposition morally means that the

control-flow history inW is compatible with the interactive information in I. The formal

defintion of this predicate will be later introduced in section H.2.

6.2 Typing Constraints
Definition 6.1. Type configurations T; S are of the shape ⟨Γ𝑜 ;Δ𝑜 | Γ𝑝 ; Δ𝑝⟩ where:
• Γ𝑝 , Γ𝑜 are two disjoint type contexts for Program names and Environment names,

respectively.

2
For a reader familiar with game semantics, this LTS specifies the plays.

, Vol. 1, No. 1, Article . Publication date: July 2018.



1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30

passive conf.

dom(𝛾) = Γ𝑝 Γ𝑜 ⊢ 𝛾 : Γ𝑝 Γ𝑝 ⊢ 𝜉 : Δ𝑜

⟨I; 𝛾 ; 𝜉⟩ ⦂ ⟨Γ𝑜 ; Δ𝑜 | Γ𝑝 ; Δ𝑝⟩

active conf.

dom(𝛾) = Γ𝑝 I; Γ𝑜 ·Δ𝑜 ⊢c M Γ𝑜 ⊢ 𝛿 : Δ𝑝

⟨M; 𝛾 ; 𝛿⟩ ⦂ ⟨Γ𝑜 ; Δ𝑜 | Γ𝑝 ; Δ𝑝⟩

Fig. 21. configuration typing.

• Δ𝑝 ,Δ𝑜 are two disjoint type contexts for effects and forwarded abstract delimited

continuations.

• For 𝑦 ∈ {𝑜, 𝑝}. Γ𝑦 and Δ𝑦 are disjoint.

The typing judgements E ⦂ T and P ⦂ S denotes that the configurations E and P are of

type T and S respectively. We define the corresponding typing relation fig. 21.

We will denote by T⊥
the type configuration dual to T defined by:

⟨Γ𝑜 ;Δ𝑜 | Γ𝑝 ;Δ𝑝⟩⊥ := ⟨Γ𝑝 ;Δ𝑝 | Γ𝑜 ;Δ𝑜⟩
The Type LTS LT is defined as (T ;M;

m−→T ) with
m−→T defined in figure 22, where T is

the set of type configurations.

PAction

Γ𝑜 (𝑎) = 𝜏 Γ𝑜 ·Δ𝑝 ·Δ𝑜 ⊩ q : ¬𝜏 ⊲ Γq;Δq

⟨Γ𝑜 ; Δ𝑜 | Γ𝑝 ; Δ𝑝⟩
𝑎𝑎𝑎.q⊕

−−−→T ⟨Γ𝑜 ; Δ𝑜 | Γ𝑝 ·Γq; Δ𝑝 ·Δq⟩

PHandle

⟨Γ𝑜 ; Δ𝑜 | Γ𝑝 ; Δ𝑝⟩
ℎ𝑑𝑙⊕−−−→T ⟨Γ𝑜 · Δ𝑜 ; ∅ | Γ𝑝 ; ∅⟩

(a) proponent transitions.

T
m−→T S

T⊥ m⊥
−−→T S⊥

(b) symmetrical transitions.

Fig. 22. Definition of LT

6.3 Well-bracketing Constraints
The interactive configurations I ∈ A we have considered thus far represent 𝑃𝑟𝑜𝑝𝑜𝑛𝑒𝑛𝑡 ’s

one-sided perspective on the computation. The information component contains all of its
codata that had been disclosed up to the current stage of the computation, namely the

continuations. However, this component (and by extant any passive configuration), as it is
defined, is history-agnostic whereas the language Λeff only permits a constrained usage of

these abstract continuations that respects a certain history-sensitive bracketing discipline.

In this section, we define the well-bracketing LTS that addresses this issue by constrain-

ing the moves of 𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡 in LAI, so that the generated well-bracketed behaviours are

correspond to actual concrete interactions.

, Vol. 1, No. 1, Article . Publication date: July 2018.



1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

A Game Semantics Study of Virtual Effects 31

6.3.1 The control-flow of delimited continuations. When an effect is performed by one

𝑃𝑙𝑎𝑦𝑒𝑟 and gets propagated beyond its immediate controlled scope, it initiates a sequence

of effectful moves until the effect is handled or reaches top-level.
To visualise this part of the interaction, we will zoom in at the computation underlying

it in the concrete example of ??.
In figure.??, we only highlight the player responsible for triggering the effect (in its active

and passive states). The resulting effectful sequence is 𝑑1
𝑑1𝑑1.⟨⟨⟨𝜅 [𝑒] ||| □⟩⟩⟩⊕𝑐0

𝑐0𝑐0.⟨⟨⟨κ ::𝜅 [𝑒] ||| □⟩⟩⟩⊖ ,
which can be understood as a pseudo-copycat sequence in which 𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡 forwards the

computation ⟨⟨⟨𝑒 ||| 𝑑1 [] ◦◦◦𝜅 [] ⟩⟩⟩ as is to the abstract continuation 𝑐0 [].
Now if we wish to generalize this sequence to one of arbitrary length 𝑛, I

s

=⇒fwd J, the

generated configuration will always be of the following shape:

I
s

=⇒fwd J J
hdl−−→fwd

J = ⟨⟨⟨⟨op v ||| T[{[]}with h] ◦◦◦ S𝑛+1 [𝜅𝑛 [S𝑛 [· · ·𝜅0 [S0] · · · ]]]⟩⟩⟩⟩
Consequently, the captured continuation will be of the shape:

𝜆𝑥.{S𝑛+1 [𝜅𝑛 [S𝑛 [· · ·𝜅0 [S0 [ret𝑥]]] · · · ]]}with h
In the case the continuation is discarded and not used, the control-flow stack remains

intact. Otherwise, every call to the captured delimited continuation entails exactly one

query addressed to each one of the 𝑛 environment controlled fragments; i.e. a call to each

of the abstract stack frames 𝜅𝑖 in the order in which they have been disclosed.

6.3.2 Well-bracketing LTS. We define the well-bracketing LTS as Lwb := (W,M,−→wb)
where the configurations are described below and the transitions

m−→wb are defined in

figure 23.

effect forwarding info. F × E ∋ 𝜂 ::= ∅ (absence of effect)
| (f , 𝑒) (effect 𝑒 forwarded through f )

configurations W ∋ W,U := ⟨𝜎 | 𝜂 | 𝜙⟩
where 𝜎 ∈ List(C ∪ K), f ∈ F = List(K) denote a control-flow stack and a call frame,
respectively, and 𝜙 ∈ ℘(F ) denotes the set of all captured call frames.

6.3.3 Embedding the interactive language. Finally, we define an interactive term embedding

into an initial active LOGS configuration and ciu-environment embedding into an initial

passive LOGS configuration.

Definition 6.2. (term embedding) Given an interactive term I; Γ ⊢c M, we define its
embedding

⟨I; Γ ⊢c M⟩⊕ogs := ⟨⟨M; 𝜀⟩ || ⟨Γ; ∅ | 𝑐f : ¬1; ∅⟩ || ⟨[𝑑]; ∅; ∅⟩⟩
with 𝑑 the unique continuation name of Γ.

Definition 6.3. (environment embedding) Given a name assignment I; 𝑐f : ¬1 ⊢ 𝛾 : Γ,
we define its embedding

⟨I; 𝑐f : ¬1 ⊢ 𝛾 : Γ⟩⊖
ogs

:= ⟨⟨∅;𝛾⟩ || ⟨𝑐f : ¬1; ∅ | Γ; ∅⟩ || ⟨[𝑐f ]; ∅; ∅⟩⟩

, Vol. 1, No. 1, Article . Publication date: July 2018.



1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32

forward(∅, 𝑐𝑐𝑐. ⟨⟨⟨𝑒 ||| □ ◦◦◦ κ⟩⟩⟩⊖) := (𝑒, [])
forward(∅, 𝜅𝜅𝜅. ⟨⟨⟨𝑒 ||| 𝑑 [□] ◦◦◦ κ⟩⟩⟩⊖) := (𝑒, [])
forward(𝜂, o) := 𝜂

call/ret(𝑎 ::𝜎, _, 𝑎𝑎𝑎.p⊖) := 𝜎

call/ret(𝜎, 𝜙, 𝜅𝜅𝜅. ⟨⟨⟨𝑒 ||| 𝑑 [□] ◦◦◦ 𝑟⟩⟩⟩⊖) := f ++𝜎
call/ret(𝜎, 𝜙, 𝜅𝜅𝜅. ⟨⟨⟨ret A ||| 𝑑 [□]⟩⟩⟩⊖) := f ++𝜎

when 𝜅 ::f ∈ 𝜙

𝜂′ = forward(𝜂, o) 𝜎 ′ = call/ret(𝜎, 𝜙, o)

⟨𝜎 | 𝜂 | 𝜙⟩ o−→wb ⟨𝜎 ′ | 𝜂′ | 𝜙⟩

⟨𝜎 | (𝑒, f ) | 𝜙⟩ ℎ𝑑𝑙⊖−−−→wb ⟨𝜎 | ∅ | 𝜙 ∪ {f }⟩

(a) opponent transitions.

forward((𝑒, f ), 𝑑𝑑𝑑. ⟨⟨⟨𝑒 ||| □ ◦◦◦ 𝜅 ::𝑟⟩⟩⟩⊕) := (f ++ [𝜅], 𝑒)
forward((𝑒, f ), κκκ. ⟨⟨⟨𝑒 ||| 𝑐 [□] ◦◦◦ 𝜅 ::𝑟⟩⟩⟩⊕) := (f ++ [𝜅], 𝑒)
forward(∅, p) := ∅

call/ret(𝜎, _, κκκ. ⟨⟨⟨ret A ||| 𝑐 [□]⟩⟩⟩⊕ ) := 𝑐 ::𝜎

call/ret(𝜎, _, κκκ. ⟨⟨⟨𝑒 ||| 𝑐 [□] ◦◦◦ _⟩⟩⟩⊕) := 𝑐 ::𝜎

call/ret(𝜎, _, 𝑓𝑓𝑓 . ⟨⟨⟨□ A ||| 𝑐⟩⟩⟩⊕) := 𝑐 ::𝜎

call/ret(𝜎, _, p) := 𝜎

𝜎 ′ = call/ret(𝜎, p) 𝜂′ = forward(𝜂, p)

⟨𝜎 | 𝜂 | 𝜙⟩
p
−→wb ⟨𝜎 ′ | 𝜂′ | 𝜙⟩

⟨𝜎 | ∅ | 𝜙⟩ ℎ𝑑𝑙⊕−−−→wb ⟨𝜎 | ∅ | 𝜙⟩

(b) pro

Fig. 23. Lwb transitions.

6.4 Interpretation of expressions
Following our equivalence of programs introduced in definition 3.3, we only observe

covergence, i.e. a full evaluation into a value returner of the shape ret v. We introduce a

notion of complete trace in order to capture this complete evaluation.

Definition 6.4. (complete traces): A trace tm ∈ Trogs is said t be complete and written

CP(tm) when:

CP(tm) :=


⟨[] | ∅ | ∅⟩ tm

===⇒wb ⟨[] | 𝜂 | 𝜙⟩ for some 𝜂 and 𝜙

m = 𝑐𝑐𝑐.⟨⟨⟨ret A ||| □⟩⟩⟩⊖ for some A and 𝑐.

Accordingly, we define the set of complete traces of a configuration:

CTrogs(G) := {t ∈ Trogs(G) | CP(t)}

6.5 Visibility and Innocence
Intuitively, Opponent’s behaviour cannot be constrained to be innocent nor visible since

he has the full capability of encoding a high-order state.

However, as explained in the introduction, the fact that we are dealing with virtual effects
entails that progams are virtually pure suggesting that there might exist corresponding

notions of virtual visibility and virtual innocence. As a matter of fact, the intensionality of

traces with respect to effects makes it so that breaking actual innocence or actual visibility
will always be done using unobservable private effects, the propagation of which appears

on the traces.

, Vol. 1, No. 1, Article . Publication date: July 2018.



1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

A Game Semantics Study of Virtual Effects 33

In the following, unless specified we use the term innocence and visibility to refer to the

virtual notions. The actual innocence (resp. visibility) will be termed strict or observational
innocence (resp. visibility).

In the previous section, we have shown how distinct traces can denote the same un-

derlying observable behaviour. Thus a third variation on these constraints up to trace

equivalence naturally arises, which we term lax-visibility and lax-innocence. In this sec-

tion, we will justify not constraining Opponent’s behaviour by showing that all traces

breaking observational O-innocence (resp. O-visibility) are actually O-lax-innocent (resp.

O-lax-visible) up-to.

The View, naively
The view in game semantics is the semantic counterpart to the syntactic scope. Typically,

in the absence of a state effect, a Player’s action can only be justified by moves falling

within this view. This condition is typically referred to as visibility.
The view of a given strategy is then defined as ... following the pointer structure, thereby

associating to each step of the interaction the accessible/visible part of the history of inter-

action. However, this restriction is lifted when dealing with a stateful environment, which

can, in principle, store and keep updating the history of interaction – thus maintaining

access to it.

A state effect can be achieved with algebraic effects and handlers, it is justified to ask

whether is required. It is worth defining the view on traces naively and observe how far

we can go.

Definition 6.5 (pointer structure).

o = 𝑎𝑎𝑎.p p =𝑏𝑏𝑏.q 𝑏 ∈ supp(p) \ supp(t0)
t0 o t1 p t2

Opponent’s strict view is given at any stage of the interaction by the recursive function

⌜⌝⊖ : Trogs ⇀ Trogs defined on P-ending traces.

Definition 6.6 (Opponent’s view). The O-view associated to a P-ending trace t, denoted

⌜t⌝⊖ is defined as:

⌜t o s p⌝⊖ := ⌜t⌝⊖ o p

We will resort to the handling structures to illustrate this definition of the view.

Visibility is a predicate on traces that guarantees that the usage by a player of names

introduced by its opponent is coherent with its current view of past interaction.

Definition 6.7 (visibility). Given a trace t ∈ Trogs, we say that t is O-visible when:

∀s ∈ (X, P)-Trogs.∀o. s o ⊑ t. supp(o) ∩ supp(s) ⊆ supp(⌜⌜s⌝⌝⊖).

Dually, a trace t ∈ Trogs is P-visible if and only if t
⊥
is O-visible.

, Vol. 1, No. 1, Article . Publication date: July 2018.



1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34

Definition 6.8 (O-innocence). Given a trace t ∈ Trogs, we say that t is O-innocent when

Opponent’s moves are invariant w.r.t. their corresponding views; that is:

∀s1 o1, s2 o2 ∈ (𝑋,O)-Trogs.s1 o1, s2 o2 ⊑ t.

∀𝜋 ∈Perm(N). 𝜋 ·⌜⌜s1⌝⌝⊖ = ⌜⌜s2⌝⌝⊖ =⇒ 𝜋 ·o1 ≡ o2

Consider the term:

t := 𝑑 [𝜆𝑥 .(𝑥 v; 𝑥 v; ret ⟨⟩)] (4)

A possible interaction is witnessed by the following trace, we denote t1:

s1︷                                                 ︸︸                                                 ︷
𝑑f𝑑f𝑑f .⟨⟨⟨ret 𝑓 ||| □⟩⟩⟩⊕ 𝑓𝑓𝑓 .⟨⟨⟨□𝑔 ||| 𝑑⟩⟩⟩⊖𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑐1⟩⟩⟩⊕ tttttt.⟨⟨⟨ret 𝑐1 ||| □⟩⟩⟩⊖𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑐2⟩⟩⟩⊕︸                                                                                         ︷︷                                                                                         ︸

s2

𝑐2
𝑐2𝑐2.⟨⟨⟨ret ff ||| □⟩⟩⟩⊖ 𝑑f𝑑f𝑑f .⟨⟨⟨ret ⟨⟩ ||| □⟩⟩⟩⊕ 𝑐f𝑐f𝑐f .⟨⟨⟨ret _ ||| □⟩⟩⟩⊖

This trace is not innocent, because s1 ≡ s2 but tttttt.⟨⟨⟨ret 𝑐1 ||| □⟩⟩⟩⊕ ̸≡ ffffff.⟨⟨⟨ret 𝑐2 ||| □⟩⟩⟩⊕ .
However, if we consider the environment given by E, where

E := ({[] (𝜆𝑥 .op ⟨⟩)}with h) tt
and

h := h𝑠state ⊎ {op ⟨⟩ 𝑘 ↦→ let𝑥 = get ⟨⟩ in if 𝑥 then set ff else set tt; 𝑘 𝑥}
Their interaction is witnessed exactly by the trace t2.

t2 :=

s1︷                                                                                                 ︸︸                                                                                                 ︷
𝑑f𝑑f𝑑f .⟨⟨⟨ret 𝑓 ||| □⟩⟩⟩⊕ 𝑓𝑓𝑓 .⟨⟨⟨□𝑔 ||| 𝑑0⟩⟩⟩⊖𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑐1⟩⟩⟩⊕ 𝑑1

𝑑1𝑑1.⟨⟨⟨𝜅 [𝑒] ||| □⟩⟩⟩⊖ 𝑐f𝑐f𝑐f .⟨⟨⟨𝜅1 · 𝜅 [𝑒] ||| □⟩⟩⟩⊕ 𝜅1
𝜅1𝜅1.⟨⟨⟨□[ret tt] ||| 𝑑1⟩⟩⟩⊖𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑐2⟩⟩⟩⊕ 𝑑2

𝑑2𝑑2.⟨⟨⟨𝜅′ [𝑒] ||| □⟩⟩⟩⊖ 𝑐f𝑐f𝑐f .⟨⟨⟨𝜅2 · 𝜅′ [𝑒′] ||| □⟩⟩⟩⊕︸                                                                                                                                                                                                 ︷︷                                                                                                                                                                                                 ︸
s2

𝜅2
𝜅2𝜅2.⟨⟨⟨□[ret tt] ||| 𝑑1⟩⟩⟩⊖ ffffff.⟨⟨⟨ret 𝑐2 ||| □⟩⟩⟩⊖ ⟨⟩⟨⟩⟨⟩.⟨⟨⟨ret𝑑f ||| □⟩⟩⟩⊕ ___.⟨⟨⟨ret 𝑐f ||| □⟩⟩⟩⊖

t1 :=

q1︷                                                              ︸︸                                                              ︷
𝑑f𝑑f𝑑f .⟨⟨⟨ret 𝑓 ||| □⟩⟩⟩⊕ 𝑓𝑓𝑓 .⟨⟨⟨□𝑔 ||| 𝑑0⟩⟩⟩⊖𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑐1⟩⟩⟩⊕ fwd(𝜅1) 𝜅1

𝜅1𝜅1.⟨⟨⟨□[ret tt] ||| 𝑑1⟩⟩⟩⊖𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑐2⟩⟩⟩⊕ fwd(𝜅2)︸                                                                                                                         ︷︷                                                                                                                         ︸
q2

𝜅2
𝜅2𝜅2.⟨⟨⟨□[ret tt] ||| 𝑑1⟩⟩⟩⊖ ffffff.⟨⟨⟨ret 𝑐2 ||| □⟩⟩⟩⊖ ⟨⟩⟨⟩⟨⟩.⟨⟨⟨ret𝑑f ||| □⟩⟩⟩⊕ ___.⟨⟨⟨ret 𝑐f ||| □⟩⟩⟩⊖

It is clear that these two traces are equivalent up to ≃𝑜 .

From Propponent’s perspective these two executions are indistinguishable, therefore

even though Opponent’s behaviour is not constrained to be innocent, there exists an

observationally equivalent behaviour that is. This is a case of lax-innocence.

Two natural questions arise:

• Is there a general definition of view, under which t2 is innocent?

• Supposing there is one, does lax-innocence always hold? Can the same be said

about lax-visibility?

• If so, then t1 represents a case of lax-innocence. Does lax-innocence always hold?

Is it the same for lax-visibility?

In the following section, we will turn our attention to the interaction of the underlying

structure of effect forwarding and handling of traces and that of justification, this will allow

us to recover the adequate structure necessary to appreciate and answer the questions

above.

In the following, we will extend this to all OGS traces.

, Vol. 1, No. 1, Article . Publication date: July 2018.



1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

A Game Semantics Study of Virtual Effects 35

Notice how Opponent’s point-of-view is not mentioned in the definition of O-visibility.

The idea is that every point-of-view is associated to a set of P-names, i.e a fixed scope or

an O-view. And every Opponent function name is associated to a point of view. That is

how O-visibility can be .. at the level of the OGS LTS in

In the presence of algebraic effects and handlers, variables can escape their scope when

used as parameters of an algebraic operation op. The scope corresponding to the evaluation
stack that handles op is therefore dynamic and not a fixed set.

We will capture this notion of dynamic visibility, by giving a more relaxed definition of

the view by considering fwd-transitions.

Definition 6.9 (Lax Opponent visibility). Given a trace t, we say that it is O-lax-visible

and write Visiblelax
O
(t) when, all the P-names in an Opponent move o are in its view; that

is in the view of the corresponding O-ending trace:

∀s, o. s o ⊑ t =⇒ supp(o) ⊆ S⊖ ( ) lax(s)

6.6 The View, Revisited
We will introduce a few handy notations to express operations on sets of traces. If V is a

set of traces in Trogs and s is a sequence in Trogs. Then we will writeV s for the point-wise

appending of s to the elements ofV , that is:

V s := {t s | t ∈ V}

Definition 6.10 (Opponent’s view). Opponent’s view is given at any stage of the interaction

by the mutually recursive functions ⌜⌝OFwd, ⌜⌝⊖, ⌜⌜⌝⌝⊖ : Trogs ⇀ ℘(Trogs) defined on P-

ending traces and ⌞⌟⊖ : Trogs ⇀ ℘(Trogs) defined on O-ending traces:

t

[s0]⊖

t0 t1

p
s2

. . . t𝑛

⌜⌜t⌝⌝⊖ := ⌜t⌝⊖ ∪ ⌜t⌝ofwd (5)

, Vol. 1, No. 1, Article . Publication date: July 2018.



1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36

⌜t fwd(𝜅0, · · · , 𝜅ℓ )⌝ofwd := ⌜⌜t⌝⌝⊖fwd(𝜅0, · · · , 𝜅ℓ )
⌜t⌝ofwd := ∅

⌜t 𝑎𝑎𝑎.p⊖ s 𝑓𝑓𝑓 .⟨⟨⟨□ A ||| 𝑐⟩⟩⟩⊕⌝⊖ := ⌜⌜t⌝⌝⊖ 𝑎𝑎𝑎.p⊖ 𝑓𝑓𝑓 .⟨⟨⟨□ A ||| 𝑐⟩⟩⟩⊕ where 𝑓 ∈ supp(p)
⌜t𝑐′𝑐′𝑐′.⟨⟨⟨𝜅 ::𝑟 [𝑒] ||| □⟩⟩⟩⊖ s 𝜅𝜅𝜅.p⊕⌝⊖ := ⌜⌜t⌝⌝⊖ 𝑐′𝑐′𝑐′.⟨⟨⟨𝜅 ::𝑟 [𝑒] ||| □⟩⟩⟩⊖ 𝜅𝜅𝜅.p⊕
⌜t𝜅′𝜅′𝜅′.⟨⟨⟨□[𝜅 ::𝑟 [𝑒]] ||| 𝑑⟩⟩⟩⊖ s 𝜅𝜅𝜅.p⊕⌝⊖ := ⌜⌜t⌝⌝⊖ 𝜅′𝜅′𝜅′.⟨⟨⟨□[𝜅 ::𝑟 [𝑒]] ||| 𝑑⟩⟩⟩⊖ 𝜅𝜅𝜅.p⊕

⌜t ⟨⟨⟨B ||| 𝑑⟩⟩⟩ s 𝑑𝑑𝑑.p⊕⌝⊖ := ⌞t ⟨⟨⟨B ||| 𝑑⟩⟩⟩⌟⊖ 𝑑𝑑𝑑.p⊕

⌞t𝑔𝑔𝑔.⟨⟨⟨□ B ||| 𝑑⟩⟩⟩⊖⌟⊖ := ⌜⌜t⌝⌝⊖𝑔𝑔𝑔.⟨⟨⟨□ B ||| 𝑑⟩⟩⟩⊖
⌞t fwd(𝜅0,· · ·, 𝜅ℓ ) s 𝜅ℓ𝜅ℓ𝜅ℓ .p⊕⌟⊖ := ⌜⌜t fwd(𝜅0,· · ·, 𝜅ℓ )⌝⌝⊖ 𝜅ℓ𝜅ℓ𝜅ℓ .p⊕
⌞t fwd(𝜅0,· · ·, 𝜅ℓ ) s 𝜅𝑖𝜅𝑖𝜅𝑖 .p⊕⌟⊖ := ⌜t fwd(𝜅0,· · ·, 𝜅𝑖)⌝⊖ fwd(𝜅𝑖+1,· · ·, 𝜅ℓ )𝜅𝑖𝜅𝑖𝜅𝑖 .p⊕

t

[s0]⊖

t0 t1

p
s2

. . . t𝑛

Proposition 6.11 (P-innocence). Given any trace t ∈ Trogs, we have that t is P-innocent.

Lemma 6.12 (Lax O-innocence). Given any trace t ∈ Trogs, there exists a trace t𝑖𝑛 such

that t ≃𝑜 t𝑖𝑛 and t𝑖𝑛 is O-innocent.

Proposition 6.13 (P-visibility). Given any trace t ∈ Trogs, we have that t is P-visible.

Lemma 6.14 (Lax O-visibility). Given any trace t ∈ Trogs, there exists a trace t𝑣𝑖𝑠 such
that t ≃𝑜 t𝑣𝑖𝑠 and t𝑣𝑖𝑠 is O-visible.

The previous property captures the property that an environment of a term is not

stateful.

If an environment is to behave in a way that is not observationally innocent, it has to

be stateful, and this can be achieved, in our setting, through an encoding of a state using

algebraic operations and a handler. However, supposing it is not innocent w.r.t to some

function w, then this function must have the following intensional behaviour: performing

an effect to read the state, which in is propagated to some evaluation stack K that handles
it and encodes the state.

Semantically, at the level of traces this effect propagation is observed in the form of

fwd-transitions and the handler corresponds to an Opponent point-of-view. therefore

, Vol. 1, No. 1, Article . Publication date: July 2018.



1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

A Game Semantics Study of Virtual Effects 37

instead of the strict notion O-innocence whereby Opponent is expected to have the exact

same observational behaviour and output the same result as in def. 6.8, we can relax this

notion of O-innocence to capture this intensional behaviour.

7 Soundness of the model
Theorem 7.1 (Adeqacy). Given an interactive term I; Γ ⊢c M and a compatible ciu-

substitution

I′; 𝑐f : ¬1 ⊢ 𝛾 : Γ, then by writing P and E for their respective ogs embeddings, we have:

∃I′′ ⊇ I′ ·I. M{𝛾} ⇓op [𝑐f ] ret ⟨⟩
⇐⇒

∃t ∈ CTrogs(P). t⊥ 𝑐f𝑐f𝑐f .⟨⟨⟨ret ⟨⟩ ||| □⟩⟩⟩⊕ ∈ CTrogs(E)

Proof. The proof of the previous adequacy theorem 7.1 is detailed in section F. It relies

on the introduction of another LTS (cf. section E) that formalizes the notion of concrete

interaction of example ??. This allows to define semantic notions of composition and

observation (at the level of configurations and complete traces) which are then shown, in

sections G and H, to coincide with their syntactic/operational counterpats. □

Theorem 7.2 (Soundness). Taking M1, M2 two interactive terms such that both I; Γ ⊢c M𝑖
(for 𝑖 ∈ {1, 2}), suppose that CTr(⟨I; Γ ⊢ M1⟩) ⊆ CTr(⟨I; Γ ⊢ M2⟩). Then I; Γ ⊢ M1 ⪯𝑐𝑖𝑢 M2.

Proof. We take a continuation name 𝑐f , an instance context I′ ⊇ I and a name

assignment 𝛾 such that I′; 𝑐f : ¬1 ⊢ 𝛾 : Γ. We write GP,𝑖 for ⟨I; Γ ⊢ T𝑖⟩, and GO for

⟨I′; 𝑐f : ¬1 ⊢ 𝛾 : Γ⟩.
Suppose that T1{𝛾} ⇓op [𝑐f ] ⟨⟩. Then from Theorem 7.1, we get that GP,1 ∧∧ GO ⇓,

and from Theorem ?? that there exists a trace t1 ∈ CTr(GP,1) such that t
⊥
1
𝑐f𝑐f𝑐f .⟨⟨⟨ret ⟨⟩ |||

□⟩⟩⟩⊕ ∈ CTr(GO). From CTr(GP,1) ⪯𝑡𝑟 CTr(GP2
), we get the existence of a trace t2 ≃𝑝 t1

such that t2 ∈ CTr(GP,2). From the O-saturation property (Lemma 5.23), we get that

t
⊥
2
𝑐f𝑐f𝑐f .⟨⟨⟨ret ⟨⟩ ||| □⟩⟩⟩⊕ ∈ CTr(GO). So from Theorem ?? in the other direction, we get that

GP,2 ∧∧ GO⇓. Finally, from Theorem 7.1, we get that T2{𝛾}⇓op [𝑐f ] ⟨⟩, as we wanted. □

8 Completeness of the model
Definable handling structures:
These are essentially abstract whose captured substructures are annotated with an identi-

fying component making them easily amenable to · · ·
These ingredients are necessary to simulate non-innocence and non-visibility.

Breaking observational innocence:
As alluded to in · · · , the nuance that is actually strictly invisible yet spawns an effect, and

the stateful reaction actually handled by the effect handler.

As the model stands, every effect is associated to a fresh name, i.e., there exist effectful
moves that break internal innocence. We call such traces degenerate traces.
In this model, every effect invocation is tied to a fresh name, giving rise to effectful

moves that may break internal innocence. Traces that exhibit such behavior; i.e. that

, Vol. 1, No. 1, Article . Publication date: July 2018.



1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

38

t = s0
®fwd(𝑒A, 𝑟 )s1 s0 ↓𝑓𝑣𝑖𝑠 s

′
0

𝑓 ∈ supp(⌜⌜t⌝⌝⊖) \ (supp(⌜t⌝⊖) ∪ supp(A))

t ↓𝑓
𝑣𝑖𝑠

s
′
0

®fwd(𝑒 ⟨A,𝑓 ⟩, 𝑟 ) t1

X =
⋃

{supp(p) | ∃t′. t′ ppp.𝑎⊕} t ↓X𝑣𝑖𝑠 s

break determinism through non-local naming or escaping effects—are termed degenerate
traces.
We define a translation turning an degenerate trace into an internally innocent one. In

order to do so, we define a marking on theH -generated structure backwards and use it

to ....

To mitigate degeneracy, we define a translation that maps degenerate traces to internally

innocent ones. This involves annotating the HH-generated structure in a backward pass,

effectively tracing dependencies in reverse and restoring structural regularity.

In the following, we assume that all examined are non-degenerate.

Breaking observational visibility:
Function names: these can “escape” their scope through effect propagation, by being a

parameter of an effect operator.

Thus, given a non-visible trace, every name is either strictly visible, or dependent on

the use of effect and handlers, which can be read off the trace / structure.

Suppose we have sppp.𝑓 ⊖ ⊏ t where 𝑓 ∉ supp(⌜s⌝⊖), the idea is to follow the handling

structure (fwd-transitions) backwards and to annnotate the effect names 𝑒 in s that

responsible for rendering 𝑓 visible. We use a subscript A on the corresponding effect names

𝑒 .

We define coniductively the visibility annotation using a rewriting rule ↓X𝑣𝑖𝑠 labeled with

a set of function names X.

Definable reaction trees:
We formalize these behavioral trees in terms of definable handling structures. These serve

as the counterpart to strictly innocent and visible traces, offering a structured view of

possible responses based on observational structure.

They are given by the following grammar, and can be obtained . . .

h ::= t | h ⟦t⟧𝜂 h | h⟨h, . . . ,h⟩
where 𝜂 ::= ⟨𝑒, 𝑖, A⟩

• A is an abstract value, such that supp(A) is the set of names that escape their original

scope through the propagation of the effect 𝑒 — this one is crucial to determine

properly underlying effect operation op in the underlying definability proof, which

we will suppose that it should have been used as follows op v with v ↗ A.
• 𝑚 on the other hand indicates the number of times the effect 𝑒 (i.e. opv) has been
replayed so far. It is crucial to maintain an internal clock, especially if the effect

, Vol. 1, No. 1, Article . Publication date: July 2018.



1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

A Game Semantics Study of Virtual Effects 39

is handled by the same handler, as it can be key element that enables a stateful

behaviour that breaks of observational innocence.

Definition 8.1 (definability tree). Given a definable h-structh, we define the corresponding

definability tree as follows:

T [h] := {I(𝑎,h) | ppp.𝑏⊖ ⊏ h ∧ 𝑎 ∈ supp(p)}
We will use the powerset notation ℘(T ) to refer to the set of (reaction and introduction)

sub-trees of T . Given a definability tree S = T [t], we will denote by S/𝑎 and S/ o the
sub-trees I(𝑎, t), R(o, t) ∈ ℘(S), respectively.
Lemma 8.2 (Innocent trees). Given an O-innocent definable handling structure h, then

for any introduction sub-tree I ∈ ℘(T [h]):

Definability
We now turn to a key definability result concerning OGS traces. This property underpins

the completeness of the semantic model, ensuring that every well-formed trace has a

corresponding generating configuration. The core idea is this: given a complete trace

t produced by some initial configuration, we construct a CIU-environment given by 𝛾

that precisely captures the observable behavior exhibited in t—excluding any dissonant

behaviors, that is:

Tr(⟨𝛾⟩) = {s | s ≤𝑜 t
⊥ ⟨⟩⟨⟩⟨⟩.⟨⟨⟨ret 𝑐 ||| □⟩⟩⟩⊖}

Proof Sketch. We proceed as follows:

(1) We prove this result for O-pure traces.

(2) By induction on the length and fwd-structure of s, we write s = t
0

𝑖 q𝑖 𝑡
1

𝑗 where

∀𝑖 < 𝑗, t0𝑖 ⊑ t
0

𝑗 and q𝑖 is a fwd-starting sequence (precisely, an h-struct redex).

We show that there exist a path of traces:

𝑠 = 𝑡0
𝑓 𝑤𝑑
−−−→ 𝑡1

𝑓 𝑤𝑑
−−−→ . . .

𝑓 𝑤𝑑
−−−→ 𝑡𝑚 = 𝑠

and T (𝑡) ∪ T (𝑠) induces a CLI env 𝛿 that generates 𝑡𝑖 and rejects all discordant traces.

H ::= □ | F · 𝑡 | F · ⟨𝑡, . . . , 𝑡⟩
□

Lemma 8.3.

⟨ret 𝐴,R(𝑞.𝑝, 𝑠)⟩ ∈ 𝑆𝑑
Lemma 8.4 (O-pure definability). Given aO-pure trace t, there exists a CIU-environment,

i.e. a name assignment 𝛾 such that:

Trogs(⟨𝛾⟩) = {s | ∃t′. s <𝑜 t
′ ∧ t

′ ⊑ t}
Proof. We proceed by exhibiting such a name assignment 𝛾 (1), then we show that

it generates t
†
, then we show that for any s

′ o ⊑ t and o′ such that s
′ o′ and s

′ o are

discordant, then:

s
′ o′⊥ ∉ Trogs(⟨𝛾⟩)2

, Vol. 1, No. 1, Article . Publication date: July 2018.



1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

40

LetT = T [t†], we define the corresponding𝛾 , denoted 𝛿 (T ), inductively by constructing
one out of name assignemts 𝛿 (T/𝑎) corresponding to each introduction sub-tree T/𝑎 ∈
℘(T ).

construction:

𝛾 := 𝛿 (T ) = 𝛿 (T/★)

𝛿 (T/ 𝑓 ) := 𝑓 ↦→ 𝜆𝑥 . match 𝑥 with {A ⇒ o{𝛿 (T/ o}}⟨A,T/ o ⟩∈T/ 𝑓
𝛿 (T/𝑐) := 𝑐 ↦→ let 𝑥 = □ in match 𝑥 with {A ⇒ o{𝛿 (T/ o)}}⟨A,T/ o ⟩∈T/𝑐
𝛿 (T/ o) := 𝑎 ∈ supp(o)

·
𝛿 (T/𝑎)

Case t is P-pure:

It is straightforward to verify that the lifted trace t
†
is generated by the passive

state ⟨𝛾⟩. Specifically, if an interaction fragment tppp.𝑎⊖ p occurrs in t
†
, then we can

proceed by induction on the length of t
†
to show that.

⟨𝛾⟩
sppp.𝑎⊖

=====⇒
ogs

⟨⟨⟨⟨p[𝛾 ′(𝑎] ||| ◦◦◦ [] ⟩⟩⟩, 𝛾 ′⟩ eval−−−→ogs ⟨Nf, I′′, 𝛾 ′⟩

such that

abstrnf ((, Nf)) = (p, _) and ⟨p,T/ p⟩ ∈ T/𝑎
Case t is P-effectful:

In this case we have to account for Proponent moves of the form:

𝜅𝜅𝜅.⟨⟨⟨□[A] ||| 𝑐⟩⟩⟩⊕

We proceed by induction on the length of 𝑡↑ and the forward structure.

Suppose s𝜅𝜅𝜅.⟨⟨⟨□[A] ||| 𝑐⟩⟩⟩⊕ q o ∈ t
†

Then we can write s = s0 fwd(𝜅) s1. We treat here the subcase where fwd(𝜅) =

fwd(𝑑, 𝑐 ;𝜅) only. The others are similar.

By induction hypothesis:

⟨𝛾⟩
s0

==⇒
ogs

G1

𝑑𝑑𝑑.⟨⟨⟨𝜅 [𝑒 ] |||□⟩⟩⟩⊕
−−−−−−−−−→ogs ⟨𝛾 (𝑑) [𝜅 [𝑒]], 𝛾 ′

1
, 𝛿⟩

𝑐𝑐𝑐.⟨⟨⟨κ ◦𝜅 [𝑒 ] |||□⟩⟩⟩⊖
−−−−−−−−−−−−→ogs ⟨𝛾 ′

1
, 𝛿 .[𝜅 ↦→ F]⟩

G1 = ⟨𝛾 ′′⟩
𝜅𝜅𝜅.⟨⟨⟨□[A] |||𝑐⟩⟩⟩⊕
−−−−−−−−−→ogs ⟨F[𝛿 (𝑑)] [ret A], 𝛾 ′′⟩ = G2

□

Theorem 8.5 (Completeness). Taking T1, T2 two named terms such that both I; Γ ⊢c T𝑖
(for 𝑖 ∈ {1, 2}), suppose that I; Γ ⊢ T1 ⊑𝑠𝑢𝑏 T2. Then CTr(⟨I; Γ ⊢ T1⟩) ⪯𝑡𝑟 CTr(⟨I; Γ ⊢ T2⟩).

Proof. We write GP,𝑖 for ⟨I; Γ ⊢ T𝑖⟩. Taking t1 ∈ CTr(GP,1) and 𝑐f a continuation name,

from the definability property (Lemma ??), we get the existence of a trace s ≃𝑜 t1 and an

OGS configuration GO composable with GP,1 such that CTr(GO) = {t | t ≃𝑜 s
⊥𝑐f (⟨⟩)}.

Then from Lemma H.14, we get that GO can be written as ⟨I′; 𝑐f : ¬1 ⊢ 𝛾 : Γ⟩, with I′ an
instance context satisfying I′ ⊇ I, and 𝛾 a name assignment such that I′; 𝑐f : ¬1 ⊢ 𝛾 : Γ.

, Vol. 1, No. 1, Article . Publication date: July 2018.



1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

A Game Semantics Study of Virtual Effects 41

From Theorem 7.1, we get that GP,2 ∧∧ GO ⇓. Applying Theorem ??, we deduce that
T1{𝛾} ⇓op 𝑐f [⟨⟩]. So from I; Γ ⊢ T1 ⊑𝑠𝑢𝑏 T2, we deduce that T2{𝛾} ⇓op 𝑐f [⟨⟩]. From
Theorem ?? and Theorem 7.1, we get that there exists a trace t2 such that t2 ∈ CTr(GP,1)
and t

⊥
2
𝑐f (⟨⟩) ∈ CTr(GO). By definition of GO, we get that t

⊥
2
𝑐f (⟨⟩) ≃𝑜 s 𝑐f (⟨⟩).

Given that t1 ≃𝑜 s ≃𝑝 t2, the Lemma 5.24 ensures the existence of t
′
2
s.t t1 ≃𝑝 t

′
2
≃𝑜 t2.

We thus have t
′
2
∈ TrOGS(G2) (by Lemma 5.23) s.t t1 ≃𝑝 t

′
2
, as wanted. □

, Vol. 1, No. 1, Article . Publication date: July 2018.



2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

42

9 Conclusion and related work
We have provided a sound interactive model for a language with dynamically-scoped

effect handlers and fresh generation of effect instances. Our model does not allow so

far exchange of effect instances between the program and its environment, that would

necessitate to keep track of such disclosed instances in a specific set, to enforce a non-

omniscience property as in [Ghica and Tzevelekos 2012]. The well-bracketing LTS would

also have to keep track of the exchanged delimited continuations when the program

performs a public effect (using a disclosed instance that is) because the environment, in

this case, would be able to handle it, and thus its behaviour must be bound accordingly.

In future work, we will present a notion of equivalence between set of complete traces,

coarser than equality, that we conjecture to be fully-abstract.

Game semantics has a long history of providing a fully-abstract interactive models for

languages with control operators, starting from the relaxation of the well-bracketed con-

dition by Laird to capture control operators like call/cc [Laird 1997] and exceptions [Laird

2001]. Gamemodels for both statically bound, first-class continuations and locally declared,

dynamically bound prompts were presented in [Laird 2017], via a monadic presentation

of such effects. In this work, prompts and exceptions cannot be referred by their names

and passed around.

To represent them as values, nominal game semantics has been developed as a versatile

framework to handle generative effects like dynamic name creation [Abramsky et al. 2004],

higher-order references [Murawski and Tzevelekos 2011] and generative exceptions and

handlers [Murawski and Tzevelekos 2014].

Operational techniques like applicative, normal-form and environmental bisimulations

has also been developed for higher-order language with fine-grained control operators

like static delimited continuations via shift and reset operations [Biernacki et al. 2019a],

dynamic ones via prompt and reset [Aristizábal et al. 2017], and algebraic effects and

handlers were considered in [Biernacki et al. 2020]. This last work is the most relevant to

us, however they do not consider fresh generation of instances. Using a notion of Kripke

normal-form bisimulations as introduced in [Hirschkoff et al. 2023; Jaber and Murawski

2021b], that is directly derived from an OGS model, it would be interesting to explore the

development of normal form bisimulations for such fresh generation of effect instances.

More Related Work
Algebraic effects and handlers have emerged as a powerful and flexible abstraction for

structuring computational effects in programming languages. Their foundation in algebraic

operations provides an elegant and modular framework for reasoning about programs.

In such a setting, effects are typically described via equational theories, and handlers

are expected to interpret or realize these operations in a manner consistent with the

underlying algebra.

However, the very generality and expressiveness of user-defined handlers introduce

significant semantic complexity. When handlers are allowed to operate in arbitrary

ways—without being constrained by a fixed algebraic specification—the traditional reason-

ing principles begin to erode. For example, handlers may intercept operations out of order,

selectively ignore them, or invoke continuations in unconventional ways. This threatens

, Vol. 1, No. 1, Article . Publication date: July 2018.



2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

A Game Semantics Study of Virtual Effects 43

key properties like equational reasoning, compositionality, and even type safety, especially

when combined with effects like state or nondeterminism.

Recent work has responded to these challenges in two broad ways. On one side are

efforts to restrict the language of handlers—e.g., by disallowing non-algebraic operations or

enforcing shallow handlers—to preserve soundness and compositionality. A representative

of this line is [Xie et al. 2020], which proposes a restricted subset of handlers for which

equational reasoning and semantic well-behavior can be recovered. We show that this

restriction corresponds to in our semantics model, although the considered language

in that work is not the same and some of the underlying issues also do not arise when

considering generality.

• It is worth studying these fragments and investigate what our model can add to

the understanding thereof.

• Scoped effects can be seen as a good programming practice since it induces a

well-disciplined semantics, but at the same time it rules out uninvited behaviours

in arbitrary/adversarial environments.

• It is worth studying whether these mis-handling of effects persists when we intro-

duce generality and private instance.

On the other side, however, is an emerging body of research that seeks to embrace the

generality of effect handlers and give it rigorous semantic footing []. Rather than enforcing

equational constraints syntactically, these approaches provide a semantic account of

handler behavior. This includes non-equational reasoning, where themeaning of a program

is characterized not by equations but by the structure of its interactions—including the

control flow, branching, and observability of effects. Our work aligns with the latter

perspective. Inspired by efforts such as Kiselyov’s Not by Equations Alone, we propose a

model where arbitrary handlers can be studied and reasoned about semantically, even

when no clear equational theory exists to govern their behavior. The use of structured

traces and handling trees allows us to capture and reflect the complex dynamics of

control and effect invocation, including delimited continuations, resumption, and dynamic

branching.

—

Shallow Handlers
It is worth noting, the model’s completeness result does not depend on the presence of

catamorphic handlers. Indeed any effectful interaction assumes that the effect is different

— unless assuming so breaks virtual innocence. Even when considering only shallow

handlers, we conjecture that the definability result and its proof remain valid, confirming

the expressibility result of [Hillerström et al. 2020] We also conjecture that there is no

required change in our model to account for shallow handlers.

Event Structures
Our model considers sequential traces that are sequential and alternating.

However, the point structure hides/veils an intricate control-flow structure, which,

coupled with effect information, can be used to uncover a richer structure that underpins

, Vol. 1, No. 1, Article . Publication date: July 2018.



2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

44

the well-bracketing conditions and induces a generalization of view that can be understood

as the sum of standard views.

The emergence of these nuanced structures is unsurprising. The study of delimited

continuations—particularly when managed via effect handlers—exposes a control-flow

landscape that straddles two extremes: strict stack discipline (with exactly one valid contin-

uation at each step), and fully liberalized nondeterminism (where multiple continuations

may coexist). Our setting reveals a middle ground: several "answering events" may be

enabled concurrently, yet they remain compatible. This naturally leads to a structure akin

to event structures in concurrency theory.

In our setting, “answering events” enable several others (in general) which may be

understood as independent events but compatible, so it is not surprising that this structure

emerges again akin to “event structure”.

Delimited continuations, especially as exposed via effect handlers, offer a fine-grained

mechanism for suspending and resuming computation. Unlike classical stack-based con-

trol, delimited continuations allow multiple resumable points to exist simultaneously, and

effect handlers provide the means to inspect, discard, or resume them selectively. This

introduces a form of control flow that is inherently branching and context-sensitive.

Interestingly, this behavior parallels key constructs in concurrency theory, particularly

in the framework of event structures. Event structures model computations as partially

ordered sets of events, where causality, independence, and conflict are explicitly rep-

resented. In this view, an "event" may depend on others before it can occur, or it may

exclude the occurrence of other conflicting events. These structures are central in modeling

nondeterminism, concurrent execution, and branching time.

The handler structures studied in our work exhibit similar features. A captured contin-

uation (e.g., ⟦t⟧) corresponds to a suspended computation — akin to an enabled event

that is not yet triggered. The branching constructs (e.g., t⟨t0, . . . , t𝑚⟩) resemble a set of

enabled events, where each branch represents a distinct potential continuation. These

resumptions may or may not interfere with each other, depending on how the handler

behaves — mirroring the notion of conflict or compatibility in event structures.

More broadly, our semantic model lives in an intermediate space between two extremes.

On one end, strict stack-based control allows only one valid continuation at a time —

enforcing a linear, sequential control structure. On the other, fully nondeterministic or

concurrent semantics allow multiple continuations or events to coexist and evolve inde-

pendently. Delimited continuations with handlers navigate this space by allowing several

suspended computations to be present at once, while maintaining causal dependencies

and structural coherence through the trace and pointer system.

The structured rewriting in our model, that is guided the justification structure, rein-

forces this analogy. These tools capture how branches relate to each other temporally and

causally, much like the partial order in an event structure or the unfolding of a concurrent

process. Consequently, our framework not only accommodates structured control and

effectful interactions but also aligns with core principles from concurrency semantics —

providing a semantic account that bridges programming language theory with event-based

models of computation.

, Vol. 1, No. 1, Article . Publication date: July 2018.



2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

A Game Semantics Study of Virtual Effects 45

This analogy to event structures has not been widely explored in the study of effect

handlers, andwe believe it sheds new light on the control-theoretic and semantic properties

of these constructs. It also opens the door to importing established reasoning tools from

concurrency theory into the semantics of delimited control.

References
Samson Abramsky, Dan R. Ghica, Andrzej S. Murawski, C.-H. Luke Ong, and Ian David Bede Stark. 2004. Nominal Games

and Full Abstraction for the Nu-Calculus. In 19th IEEE Symposium on Logic in Computer Science (LICS 2004), 14-17 July
2004, Turku, Finland, Proceedings. IEEE Computer Society, 150–159. doi:10.1109/LICS.2004.1319609

Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. 2000. Full Abstraction for PCF. Inf. Comput. 163, 2 (dec
2000), 409–470. doi:10.1006/inco.2000.2930

Samson Abramsky and Guy McCusker. 1997. Game Semantics. In Handbook of Logic in Computer Science. Vol. 5. Oxford

University Press.

Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. 2014. Distilling Abstract Machines. In Proceedings of the 19th
ACM SIGPLAN International Conference on Functional Programming (ICFP ’14). Association for Computing Machinery,

New York, NY, USA, 363–376. doi:10.1145/2628136.2628154

Andrés Aristizábal, Dariusz Biernacki, Sergueï Lenglet, and Piotr Polesiuk. 2017. Environmental Bisimulations for Delimited-

Control Operators with Dynamic Prompt Generation. Log. Methods Comput. Sci. 13, 3 (2017). doi:10.23638/LMCS-13(3:

27)2017

Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic effects and handlers. Journal of Logical and Algebraic
Methods in Programming 84, 1 (2015), 108–123. doi:10.1016/j.jlamp.2014.02.001 Special Issue: The 23rd Nordic Workshop

on Programming Theory (NWPT 2011) Special Issue: Domains X, International workshop on Domain Theory and

applications, Swansea, 5-7 September, 2011.

Dariusz Biernacki, Sergueï Lenglet, and Piotr Polesiuk. 2019a. Bisimulations for Delimited-Control Operators. Log. Methods
Comput. Sci. 15, 2 (2019). doi:10.23638/LMCS-15(2:18)2019

Dariusz Biernacki, Sergueï Lenglet, and Piotr Polesiuk. 2020. A complete normal-form bisimilarity for algebraic effects and

handlers. In Formal Structures for Computation and Deduction.
Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019b. Binders by day, labels by night: effect instances

via lexically scoped handlers. Proceedings of the ACM on Programming Languages 4, POPL (2019), 1–29.

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. Effects as capabilities: effect handlers and

lightweight effect polymorphism. Proc. ACM Program. Lang. 4, OOPSLA (2020), 126:1–126:30. doi:10.1145/3428194

Vincent Danos, Hugo Herbelin, and Laurent Regnier. 1996. Game semantics and abstract machines. In Proceedings 11th
Annual IEEE Symposium on Logic in Computer Science. IEEE, 394–405.

Paulo Emílio de Vilhena and François Pottier. 2023. A type system for effect handlers and dynamic labels. In Programming
Languages and Systems: 32nd European Symposium on Programming, ESOP 2023, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April 22–27, 2023, Proceedings. Springer Nature
Switzerland Cham, 225–252.

Dan R Ghica and Nikos Tzevelekos. 2012. A system-level game semantics. Electronic Notes in Theoretical Computer Science
286 (2012), 191–211.

Daniel Hillerström, Sam Lindley, and Robert Atkey. 2020. Effect Handlers via Generalised Continuations. 30 (2020), e5.

doi:10.1017/S0956796820000040

Daniel Hirschkoff, Guilhem Jaber, and Enguerrand Prebet. 2023. Deciding Contextual Equivalence of 𝜈-Calculus with

Effectful Contexts. In Foundations of Software Science and Computation Structures - 26th International Conference, FoSSaCS
2023, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April
22-27, 2023, Proceedings (Lecture Notes in Computer Science, Vol. 13992), Orna Kupferman and Pawel Sobocinski (Eds.).

Springer, 24–45. doi:10.1007/978-3-031-30829-1_2

J.M.E. Hyland and C.-H.L. Ong. 2000. On Full Abstraction for PCF. Inf. Comput. 163, 2 (dec 2000), 285–408. doi:10.1006/
inco.2000.2917

Guilhem Jaber and Andrzej S Murawski. 2021a. Complete trace models of state and control. Programming Languages and
Systems 12648 (2021), 348.

Guilhem Jaber and Andrzej S. Murawski. 2021b. Compositional relational reasoning via operational game semantics. In

36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE, 1–13.
doi:10.1109/LICS52264.2021.9470524

James Laird. 1997. Full abstraction for functional languages with control. In Proceedings of Twelfth Annual IEEE Symposium
on Logic in Computer Science. 58–67. doi:10.1109/LICS.1997.614931

, Vol. 1, No. 1, Article . Publication date: July 2018.

https://doi.org/10.1109/LICS.2004.1319609
https://doi.org/10.1006/inco.2000.2930
https://doi.org/10.1145/2628136.2628154
https://doi.org/10.23638/LMCS-13(3:27)2017
https://doi.org/10.23638/LMCS-13(3:27)2017
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.23638/LMCS-15(2:18)2019
https://doi.org/10.1145/3428194
https://doi.org/10.1017/S0956796820000040
https://doi.org/10.1007/978-3-031-30829-1_2
https://doi.org/10.1006/inco.2000.2917
https://doi.org/10.1006/inco.2000.2917
https://doi.org/10.1109/LICS52264.2021.9470524
https://doi.org/10.1109/LICS.1997.614931


2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

46

James Laird. 2001. A Fully Abstract Game Semantics of Local Exceptions. In 16th Annual IEEE Symposium on Logic in
Computer Science, Boston, Massachusetts, USA, June 16-19, 2001, Proceedings. IEEE Computer Society, 105–114. doi:10.

1109/LICS.2001.932487

James Laird. 2007. A Fully Abstract Trace Semantics for General References. In Proceedings of the 34th International
Conference on Automata, Languages and Programming (Wrocław, Poland) (ICALP’07). Springer-Verlag, Berlin, Heidelberg,
667–679.

James Laird. 2017. Combining control effects and their models: Game semantics for a hierarchy of static, dynamic and

delimited control effects. Ann. Pure Appl. Log. 168, 2 (2017), 470–500. doi:10.1016/J.APAL.2016.10.011
Søren B. Lassen and Paul Blain Levy. 2008. Typed normal form bisimulation for parametric polymorphism. In 2008 23rd

Annual IEEE Symposium on Logic in Computer Science. IEEE, 341–352.
Paul Blain Levy. 2004. Call-By-Push-Value: A Functional/Imperative Synthesis. Semantics Structures in Computation, Vol. 2.

Springer.

Ian Mason and Carolyn Talcott. 1991. Equivalence in functional languages with effects. Journal of Functional Programming
1, 3 (1991), 287–327. doi:10.1017/S0956796800000125

James Hiram Morris Jr. 1969. Lambda-calculus models of programming languages. Ph.D. Dissertation. Massachusetts

Institute of Technology.

Andrzej S Murawski and Nikos Tzevelekos. 2011. Game semantics for good general references. In 2011 IEEE 26th Annual
Symposium on Logic in Computer Science. IEEE, 75–84.

Andrzej S Murawski and Nikos Tzevelekos. 2014. Game semantics for nominal exceptions. In Foundations of Software
Science and Computation Structures: 17th International Conference, FOSSACS 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings 17. Springer,
164–179.

Gordon Plotkin and John Power. 2001. Semantics for algebraic operations. Electronic Notes in Theoretical Computer Science
45 (2001), 332–345.

Gordon Plotkin and John Power. 2002. Computational effects and operations: An overview. (2002).

Gordon D Plotkin and Matija Pretnar. 2013. Handling algebraic effects. Logical methods in computer science 9 (2013).
Ningning Xie, Jonathan Immanuel Brachthäuser, Daniel Hillerström, Philipp Schuster, and Daan Leijen. 2020. Effect

Handlers, Evidently. Proc. ACM Program. Lang. 4, ICFP (Aug. 2020), 99:1–99:29. doi:10.1145/3408981

Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-safe effect handlers via tunneling. Proc. ACM Program. Lang. 3,
POPL (2019), 5:1–5:29. doi:10.1145/3290318

, Vol. 1, No. 1, Article . Publication date: July 2018.

https://doi.org/10.1109/LICS.2001.932487
https://doi.org/10.1109/LICS.2001.932487
https://doi.org/10.1016/J.APAL.2016.10.011
https://doi.org/10.1017/S0956796800000125
https://doi.org/10.1145/3408981
https://doi.org/10.1145/3290318


2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

A Game Semantics Study of Virtual Effects 47

context-stuck

v ↗ (A, 𝛾A)
⟨⟨⟨ret v ||| □⟩⟩⟩t (⟨⟨⟨ret A ||| □⟩⟩⟩, 𝛾A, ∅)

return

perform

𝜄 ∉ 𝜈

⟨op v | □ ◦ F⟩ t (⟨⟨⟨𝜅 [𝑒] ||| □⟩⟩⟩, 𝜀, (𝑒, [𝜅], [𝑒 ↦→ op v] · [𝜅 ↦→F]))
private

𝜄 ∈ 𝜈 v ↗ (A, 𝛿A)
⟨op v | □ ◦ F⟩ t (⟨⟨⟨𝜅 [op A as 𝑒] ||| □⟩⟩⟩, 𝜀, (𝑒, [𝜅], 𝛿A · [𝑒 ↦→ op v] · [𝜅 ↦→F]))

public

forward

⟨⟨⟨𝑒 ||| □ ◦◦◦ F[𝑟 ]⟩⟩⟩t (⟨⟨⟨𝜅 ::𝑟 [𝑒] ||| □⟩⟩⟩, 𝜀, (𝑒, 𝜅 ::𝑟, [𝜅 ↦→F]))

open-stuck

v ↗ (A, 𝛾A)
⟨⟨⟨□ v ||| S⟩⟩⟩t (⟨⟨⟨□ A ||| 𝑐⟩⟩⟩, 𝛾A · [𝑐 ↦→S], ∅)

P(□) t (p, 𝛾, 𝜉)
P(S[□]) t (p(𝑐 [□]]), 𝛾 · [𝑐 ↦→S], 𝜉)

(a) abstracting copatterns

context-stuck

Γ ⊩c A : 𝜏 ⊲ ΓA;ΔA

Γ ⊩⟨⟨⟨A ||| □⟩⟩⟩: ¬¬𝜏 ⊲ ΓA;ΔA
open-stuck

Γ ⊩c A : 𝜏 ⊲ ΓA;ΔA

Γ ⊩⟨⟨⟨□ A ||| 𝑑⟩⟩⟩: ¬(𝜏⇝𝜐) ⊲ ΓA · [𝑑 ↦→¬𝜐];ΔA

Γ ⊩v A : 𝜏 ⊲ ΓA

Γ ⊩⟨⟨⟨□ A ||| 𝑑⟩⟩⟩: ¬(𝜏 → 𝜐) ⊲ ΓA · [𝑑 ↦→¬𝜐]; ∅
(b) copatterns typing rules.

Fig. 24. abstraction process of copatterns.

A Disclosure of effect instances
A.0.1 Abstract values.

A, B := ⟨⟩ | n | ff | tt | 𝑓 | 𝜄

𝜄 t (𝜄, 𝜀)

B Concrete Interaction
In concrete interaction, we have named terms. . . effects and toplevel explanation + concrete

example + composing a term and its concrete environment

B.0.1 configurations.

CI confs A,B := ⟨J ⊣⊢ I⟩
Env. conf J := ⟨IJ; 𝛾I; 𝔢I; 𝜈I ⟩
Prog. conf I := ⟨M; 𝛾J; 𝔢J; 𝜈J ⟩

𝔢 := ⊥ (no effect)

| e𝑒𝛿 (Abstract effect to be forwarded)

| 𝑒𝛿 (Explicit effect to be handled or fowarded)

, Vol. 1, No. 1, Article . Publication date: July 2018.



2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

48

Handling

M ̸↦→eval

⟨I𝑎 ; 𝛾𝑝 ; (𝑒, e, 𝛿𝑝); 𝜈𝑝 ⊣⊢M; 𝛾𝑎 ; 𝛿𝑎 ; 𝜈𝑎⟩
hdl↦→ci ⟨I𝑝 ; 𝛾𝑝 ; ⊥; 𝜈𝑎 ⊣⊢M{𝛿𝑝 }; 𝛾𝑎 ·𝛿𝑝 ;⊥; 𝜈𝑝⟩

Evaluating

M ↦→eval N

⟨I𝑎 ; 𝛾𝑝 ; ⊥; 𝜈𝑝 ⊣⊢ M; 𝛾𝑎 ; ⊥; 𝜈𝑎⟩
eval↦→ci ⟨I𝑎 ; 𝛾𝑝 ; ⊥; 𝜈𝑝 ⊣⊢ N; 𝛾𝑎 ·𝛿𝑎 ;⊥; 𝜈𝑎⟩

(a) Internal evaluation

Dualizing

abstract(Nf,𝔢X, 𝜈𝑝) t (⟨⟨⟨A ||| 𝑐⟩⟩⟩, 𝛾abs,𝔢′X⊥, 𝜈
′
𝑝) concretize(⟨⟨⟨A ||| 𝑐⟩⟩⟩⊥, 𝛾𝑎,𝔢X) u E⊥ [t]

⟨I𝑎 ;𝛾𝑝 ;𝔢X⊥ ; 𝜈𝑝 ⊣⊢Nf;𝛾𝑎 ;𝔢X;𝜈𝑎⟩
dual↦→ci ⟨I𝑝 ;𝛾𝑎 ;𝔢X;𝜈𝑎 ⊣⊢E⊥ [t];𝛾𝑝 ·𝛾abs;𝔢X⊥ ·𝔢′X⊥ ;𝜈𝑝∪𝜈 ′𝑝⟩
(b) Interaction interface

Fig. 25. Concrete Interaction LTS

pure

Pt (p, 𝛾, ∅)
abstract(P(𝑎), ∅, _) t (𝑎𝑎𝑎.p, 𝛾, ∅)

effectful

⟨⟨⟨op v ||| S[□] ◦◦◦ F⟩⟩⟩t (p, 𝛾, 𝜉)
abstract(⟨⟨⟨op v ||| S[𝑎 []] ◦◦◦ F⟩⟩⟩, ∅, 𝜈) t (𝑎𝑎𝑎.p, 𝛾, 𝜉)

perform

⟨⟨⟨𝑒 ||| S[□] ◦◦◦ F[𝑟 ]⟩⟩⟩t (p, 𝛾, 𝜉)
abstract(⟨⟨⟨e ||| S[𝑎 []] ◦◦◦ F[𝑟 ]⟩⟩⟩, (𝑒, 𝑟, _), _) t (𝑎𝑎𝑎.p, 𝛾, 𝜉)

forward

(a) abstracting normal forms

pure/perform

concretize(𝑎𝑎𝑎.p, 𝛾, ∅) = p(𝛾 (𝑎))

forward

𝜉 = (𝑒, 𝑟, 𝛿) p =⟨⟨⟨𝜅 ::𝑟 [𝑒] ||| _⟩⟩⟩ P = p{𝛿 (𝑒)/𝑒}
concretize(𝑎𝑎𝑎.p, 𝛾, 𝜉) = P(𝛾 (𝑎))

(b) concretizing abstract normal forms

Fig. 26. the dualizing process.

C Abstract Interaction
configurations and moves. The information exchanged J will be captured by a two compo-

nents; 𝛾 : N ⇀ Terms × ECxts (codata + handles to use/probe) and 𝜉 that captures effect

information.

J := ⟨I; 𝛾 ; 𝜉 ; 𝜈 ⟩

, Vol. 1, No. 1, Article . Publication date: July 2018.



2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

A Game Semantics Study of Virtual Effects 49

Eval

M ↦→eval N

⟨M; 𝛾 ; 𝜈⟩ eval−−−→I ⟨N; 𝛾 ; 𝜈⟩
(a) Internal evaluation

Px

abstract(Nf) t (𝑎𝑎𝑎.p, 𝛾p) 𝜌 = supp(p)

⟨Nf; 𝛾 ; 𝜈⟩
𝑎𝑎𝑎.p⊕

−−−→I ⟨I; 𝛾 ·𝛾p; 𝜈 ·𝜌⟩ ⟨I; 𝛾 ; 𝜈⟩
𝑎𝑎𝑎.p⊖

−−−→I ⟨p(𝛾 (𝑎)); 𝛾 ; 𝜈⟩
Ox

(b) Pure moves

Forward

I
s

=⇒fwd J

I
s

=⇒
I
J

(c) Effect forwarding sequences

Forward

M ↦→fwd N

⟨M; 𝛾 ; □□ 𝜉 ; 𝜈⟩ −→fwd ⟨N; 𝛾 ; □□ 𝜉 ; 𝜈⟩

PHandle

M ↦→eval

⟨M; 𝛾 ; !!!𝜉 ; 𝜈⟩ ℎ𝑑𝑙⊕−−−→fwd ⟨M{𝜉}; 𝛾 ; 𝜈⟩

OHandle

⟨I; 𝛾 ; ???𝜉 ; 𝜈⟩ ℎ𝑑𝑙⊖−−−→fwd ⟨I; 𝛾 ·𝜉 ; 𝜈⟩
(d) Internal effect manipulation

Peff

abstract(Nf, 𝜉, 𝜈) t (𝑎𝑎𝑎.p, 𝛾p, 𝜉p) 𝜌 = supp(p)

⟨Nf; 𝛾 ; □□ 𝜉 ; 𝜈⟩
𝑎𝑎𝑎.p⊕

−−−→fwd ⟨I; 𝛾 ·𝛾p; □□ 𝜉 ·𝜉p; 𝜈 ·𝜌⟩

concretize(𝑎𝑎𝑎.p, 𝛾, □□ 𝜉) = (M, 𝛿)

⟨I; 𝛾 ; □□ 𝜉 ; 𝜈⟩
𝑎𝑎𝑎.p⊖

−−−→fwd ⟨M; 𝛾 ; 𝜉 ; 𝜈⟩
Oeff

(e) Effectful moves

Fig. 27. transitions of the Abstract Interaction LTS

G,H := ⟨M; J⟩ (Active State)

| J (Passive State)

𝜉 := ∅ | (?𝑒, 𝑟, 𝛿) | (?e, 𝑒, 𝑟 , 𝛿) (may perform/forward effect)

| (!!!e, 𝑒, 𝑟 , 𝛿) (must forward effect)

The moves are given by the previously described named abstract computations.

m := a | a⊥

C.0.1 Definition of LAI.

, Vol. 1, No. 1, Article . Publication date: July 2018.



2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

50

D Well-bracketing LTS

D.0.1 configurations and moves. Lwb (Lop) is defined as (W;M;

m−→wb) with
m−→wb defined

in Figure 23 andW defined in the following subsection D.0.1.

Call Stack 𝜋 ::= [] |𝑐 ::𝜎 |𝜅 ::𝜎

Frames f ::= [] |𝜅 ::f
Current Frame 𝜂 ::= ∅

| (p, 𝑒, f ) where p ∈ {⊖⊖⊖, ⊕⊕⊕}
Captured Cont. 𝜙 := ℘( {⊖⊖⊖, ⊕⊕⊕}× 𝐹 )
WB configurations W := Π×𝐹×𝐾

where Π, 𝐹 , Φ and 𝐾 denote the set of all call stacks, the set of frames, the set of current

effectful frames and the set of all captured continuations, respectively.

For uniformity of treatment, we will consider ∅ ∈ Φ× 𝑁𝑎𝑚𝑒𝑠⊥𝑒
and write ∅ := [],⊥e.

D.0.2 transitions.

, Vol. 1, No. 1, Article . Publication date: July 2018.



2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

A Game Semantics Study of Virtual Effects 51

forward(∅, 𝑎𝑎𝑎. ⟨⟨⟨𝑒 ||| _[□] ◦◦◦ κ⟩⟩⟩⊖) := (⊖⊖⊖, 𝑒, [])
forward(𝜂, o) := 𝜂

call/ret(𝑎 ::𝜎, _, 𝑎𝑎𝑎.p⊖) := 𝜎

call/ret(𝜎, 𝜙, 𝜅𝜅𝜅. ⟨⟨⟨B ||| 𝑑 [□] ◦◦◦ _⟩⟩⟩⊖) := f ++𝜎 when ( ⊕⊕⊕ , 𝜅 ::f ) ∈ 𝜙
call/ret(𝜎, 𝜙, 𝜅𝜅𝜅. ⟨⟨⟨ret B ||| 𝑑 [□]⟩⟩⟩⊖) := f ++𝜎 when ( ⊖⊖⊖ , 𝜅 ::f ) ∈ 𝜙

(a) opponent moves

forward(∅, 𝑎𝑎𝑎. ⟨⟨⟨𝑒 ||| _[□] ◦◦◦ 𝜅⟩⟩⟩⊕) := (⊕⊕⊕, 𝑒, [𝜅])
forward((p, 𝑒, f ), 𝑎𝑎𝑎. ⟨⟨⟨𝑒 ||| _[□] ◦◦◦ 𝜅 ::_⟩⟩⟩⊕) := (p, 𝑒, f ++ [𝜅])

forward(∅, p) := ∅

call/ret(𝜎, _, κκκ. ⟨⟨⟨A ||| 𝑐 [□] ◦◦◦ _⟩⟩⟩⊕) := 𝑐 ::𝜎

call/ret(𝜎, _, 𝑔𝑔𝑔.⟨⟨⟨□ A ||| 𝑐⟩⟩⟩⊕) := 𝑐 ::𝜎

call/ret(𝜎, _, p) := 𝜎

(b) proponent moves

𝜂′ = forward(𝜂, m) 𝜎 ′ = call/ret(𝜎, 𝜙, m)

⟨𝜎 | 𝜂 | 𝜙⟩ m−→wb ⟨𝜎 ′ | 𝜂′ | 𝜙⟩

⟨𝜎 | (p, 𝑒, f ) | 𝜙⟩ ℎ𝑑𝑙⊖−−−→wb ⟨𝜎 | ∅ | 𝜙 ∪ {f }⟩ ⟨𝜎 | (p, 𝑒, f ) | 𝜙⟩ ℎ𝑑𝑙⊕−−−→wb ⟨𝜎 | ∅ | 𝜙⟩
(c) transitions

Fig. 28. transitions

E Concrete Interaction
Lci can be seen as an abstract machine that performs a variant of the linear head reduction,

which is known to correspond to interaction in game semantics [Danos et al. 1996],

(having a global environment 𝛾 , it is similar to the Milner Abstract Machine [Accattoli et al.

2014]), computing the interaction between a program configuration and an environment

configuration that are composable.
The purpose of the concrete interaction is to evaluate a term inside an environment while

exhibiting the interaction between the two that gets obscured by plain syntax substitution.
To this effect, the program being evaluated and its environment will remain decoupled, but

will each carry an information component that will be threaded through their interaction.

This component keeps track of the history of the interaction and it consists of a map

, Vol. 1, No. 1, Article . Publication date: July 2018.



2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

52

between the names and the concrete code of codata that each party has disclosed and

rendered accessible to the other.

E.1 Concrete interaction LTS
The concrete interaction describes how a term and a complementary concrete environment

interact by disclosing information and alternate between passive and active states. It

emphasizes the interaction points between the two by highlighting the information they

disclose to each other. At every stage of the interaction, the passive player is described by

an accumulative component tracking its past contribution to the interaction, whereas the

active player description contains in addition an interactive term representing the current

active computation.

It is a polarized abstract machine whose configurations involve a passive and a decoupled
complementary passive LAI configurations (cf. 4.2).
We formalize this notion of complementarity by the following definition.

Definition E.1. (Complementarity) Let P = ⟨I𝑎;𝛾𝑎; 𝜉𝑎⟩, A = ⟨M;𝛾𝑝 ;𝛿𝑝⟩ ∈ A such that

M =⟨⟨⟨t ||| S ◦◦◦ T⟩⟩⟩ and 𝑐f ∈ C. We say that P and A are 𝑐f -complementary and write P ⊣⊢𝑐 A
when:

• I𝑎 ∩ I𝑝 = ∅ and dom(𝛾𝑎) ∪ dom(𝛾𝑝) = ∅
• ∃𝑦 ∈ {𝑎, 𝑝}. ∃𝑑 ∈dom(𝛾𝑦). 𝑐f ∈ supp(𝛾𝑦 (𝑑))
• ∀𝑦 ∈ {𝑎, 𝑝}.∀𝑑 ∈dom(𝛾𝑦). (supp(𝛾𝑦 (𝑑)) \ {𝑐f }) ⊆ dom(𝛾𝑦⊥)
• supp(codom(𝜉𝑎)) ⊆ dom(𝛾𝑝) and supp(codom(𝛿𝑝)) ⊆ dom(𝛾𝑎)
• supp(t), supp(S) ⊆ dom(𝛾𝑎) and supp(T) ⊆ dom(𝛾𝑎)∪dom(𝜉𝑎).
• There exists a type configuration T = ⟨Γ𝑜 ;Δ𝑜 | Γ𝑝 ;Δ𝑝⟩ ∈ T and a type 𝜏 s. t. either:

P ⦂ ⟨Γ𝑜 , 𝑐f : ¬𝜏 ;Δ𝑜 | Γ𝑝 ;Δ𝑝⟩ and A ⦂ T⊥
or P ⦂ T and A ⦂ ⟨Γ𝑝 , 𝑐f : ¬𝜏 ;Δ𝑝 | Γ𝑜 ;Δ𝑜⟩.

We will sometimes omit the index 𝑐 on the relation ⊣⊢𝑐 in contexts that do not require

us to be explicit and just write P ⊣⊢ A.
In the following, we will use the notation ⟨P ⊣⊢ A⟩ to denote the couple (P,A) ∈ A2

satisfying P ⊣⊢ A.

E.1.1 configurations and transitions.

configurations Confsci ∋ C,D ::= ⟨P ⊣⊢ A⟩

The CI transitions are given by ↦→ci :=
eval↦→ci ∪

dual↦→ci ∪
hdl↦→ci and are defined in fig. 29.

Similar to LAI,

eval↦→ci corresponds to evaluating a term through ↦→eval down to an normal

form, while

hdl↦→ci marks the end of effect propagation whereby the active player gets to
capture the fragments of the forward stack that belong to the environment.

On the other hand,

dual↦→ci acts on configurations in normal form by dualizing the perspec-

tive of the computation; i.e taking the perspective of the environment.

The dualizing process. It is defined as the composition of two processes abstract and
concretize; The polarity of the abstract normal form 𝑎𝑎𝑎.p produced by abstract is switched
in order to take the environment’s perspective, then the concretization is carried out on

𝑎𝑎𝑎.p as explained above.

, Vol. 1, No. 1, Article . Publication date: July 2018.



2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

A Game Semantics Study of Virtual Effects 53

Evaluating

M ↦→op N

⟨I𝑝 ; 𝛾𝑝 ⊣⊢ M; 𝛾𝑎⟩
eval↦→ci ⟨I𝑝 ; 𝛾𝑝 ⊣⊢ N; 𝛾𝑎⟩

Handling

⟨I𝑎 ; 𝛾𝑝 ; ?(_, _, 𝛿𝑝) ⊣⊢ M; 𝛾𝑎 ; 𝛿𝑎⟩
hdl↦→ci ⟨I𝑎 ; 𝛾𝑝 ·𝛿𝑝 ⊣⊢ M; 𝛾𝑎⟩

(a) Internal evaluation

Dualizing

abstract(Nf, 𝛿𝑝) t (𝑎𝑎𝑎.p, 𝛾abs, 𝜉abs) concretize(𝑎𝑎𝑎.p, 𝛾𝑝 , 𝜉𝑝) = M

⟨I𝑎 ; 𝛾𝑝 ; 𝜉𝑝 ⊣⊢ Nf; 𝛾𝑎 ; 𝛿𝑎⟩
dual↦→ci ⟨I𝑝 ; 𝛾𝑎 ·𝛾abs; 𝜉𝑎 [𝜉abs] ⊣⊢ M; 𝛾𝑝 ; 𝜉𝑝⟩

(b) Interaction interface

Fig. 29. transitions of the Concrete Interaction LTS

Abstracting a co-pattern into the shapes ⟨⟨⟨𝑟 [𝑒] ||| S[□]⟩⟩⟩ or ⟨⟨⟨𝑟 [𝑒] ||| □⟩⟩⟩; that is an abstract

effect 𝑒 with its delimiting abstract evaluation stack 𝑟 is a gradual process. The fragments

𝜅 making up 𝑟 cannot be computed from the syntax alone, an interaction has to force the

environment to perform the necessary "abstract" ↦→fwd reductions on stuck terms such

as ⟨⟨⟨op v ||| S[𝜅 []] ◦◦◦ T⟩⟩⟩ or ⟨⟨⟨𝑒 ||| 𝑐 [] ◦◦◦T⟩⟩⟩ in oder to progressively compute 𝑟 . The exchanged

delimited continuations are gradually put in 𝛿 , whose disclosure and concretization is

delayed until the effect has been effectively handled (cf. handling rule in Fig. 29).

E.2 Properties of the CI LTS
E.2.1 Correctness.

Lemma E.2 (Complementarity preservation). Let P ∈Confs
⊖
ci
, A ∈Confs

⊕
ci
such that

P ⊣⊢ A. If ⟨P ⊣⊢ A⟩ ↦→ci ⟨P′ ⊣⊢ A′⟩, then P′ ⊣⊢ A′
.

Proof. Let’s write A = ⟨M; 𝛾𝑝 ; 𝛿𝑝⟩, P = ⟨I𝑝 ; 𝛾𝑎 ; 𝜉𝑎⟩ and M =⟨⟨⟨t ||| S ◦◦◦ T⟩⟩⟩.
Case ⟨A ⊣⊢ P⟩

op

↦→ci ⟨A′ ⊣⊢ P′⟩.
Then 𝜉𝑎 = ∅ and 𝛿𝑝 = ∅ and there exists N =⟨⟨⟨u ||| S′ ◦◦◦ T′⟩⟩⟩ and I′𝑎 s.t. M ↦→op N,
A′ = ⟨N; 𝛾𝑝 ; ∅⟩ and P′ = P.
Subcase I′𝑎 ∩ I𝑝 = ∅.

It is immediate that supp(T′) ⊆ supp(M) ⊆ dom(𝛾𝑎) ∪ dom(𝛿𝑝). We have

supp(u), supp(S′) ⊆ supp(t)∪supp(S), then by hypothesis we get supp(u), supp(S′) ⊆
supp(dom(𝛾𝑎)).
W.l.o.g. suppose ∃T = ⟨Γ𝑜 ; ∅ | Γ𝑝 ; ∅⟩ and ⊆ dom(𝛾𝑎). P ⦂ ⟨Γ𝑜 ; ∅ | Γ𝑝 ·[𝑐 ↦→¬𝜏]; ∅⟩
and A ⦂ T⊥

, then we have I𝑎; Γ𝑜 ⊢c M and from lemma ??, we have I′𝑎; Γ𝑜 ⊢c N,
thus A′ ⦂ T⊥

. The remaining complementarity conditions are trivially satisfied.

Case ⟨A ⊣⊢ P⟩ hdl↦→ci ⟨A′ ⊣⊢ P′⟩.
Then A′ = ⟨M; 𝛾𝑝 ; ∅⟩ and P′ = ⟨I𝑝 ; 𝛾𝑎 ·𝛿𝑎 ∅⟩ where 𝜉𝑎 = (_, _, 𝛿𝑎).
Since supp(M) ⊆ dom(𝛾𝑎) ∪ dom(𝛿𝑎) then supp(M) ⊆ dom(𝛾𝑎 ·𝛿𝑎).

, Vol. 1, No. 1, Article . Publication date: July 2018.



2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

54

W.l.o.g. let T = ⟨Γ𝑜 ;Δ𝑜 | Γ𝑝 ;Δ𝑝⟩ and suppose P ⦂ ⟨Γ𝑜 ;Δ𝑜 | Γ𝑝 · [𝑐 ↦→ ¬𝜏];Δ𝑝⟩⊥ and

A ⦂ T., Taking S = ⟨Γ𝑜 ·Δ𝑜 ; ∅ | Γ𝑝 ; ∅⟩, since I𝑎 ; Γ𝑜 ·Δ𝑜 ⊢c M, we can verify that A′ ⦂ S
and P ⦂ ⟨Γ𝑜 ·Δ𝑜 ; ∅ | Γ𝑝 · [𝑐 ↦→¬𝜏]; ∅⟩⊥.

Case ⟨A ⊣⊢ P⟩ dual↦→ci ⟨A′ ⊣⊢ P′⟩.
By writing abstract(M, 𝛿𝑝) t (𝑎𝑎𝑎.p, 𝛾abs, 𝜉𝑝) and concretize(𝑎𝑎𝑎.p, 𝛾𝑎; 𝜉𝑎) = (N, 𝛿𝑎)
with N =⟨⟨⟨u ||| S′ ◦◦◦ T′⟩⟩⟩, we have A′ = ⟨N; 𝛾𝑎 ; 𝛿𝑎⟩ and P′ = ⟨I𝑎 ; 𝛾𝑝 ·𝛾abs; 𝛿𝑝 ·𝜉⟩.
We have supp(codom(𝛿𝑎)) = supp(codom(𝜉𝑎)) and supp(codom(𝜉)) ⊆ supp(t),
thus by hypothesis, we have supp(codom(𝛿𝑎)) ⊆ dom(𝛾𝑝) ⊆ dom(𝛾𝑝 ·𝛾abs), and we
also have supp(codom(𝜉 ·𝛿𝑝)) ⊆ supp(𝛾𝑎).
W.l.o.g. let T = ⟨Γ𝑜 ;Δ𝑜 | Γ𝑝 ;Δ𝑝⟩ and suppose P ⦂ ⟨Γ𝑜 ;Δ𝑜 | Γ𝑝 · [𝑐 ↦→ ¬𝜏];Δ𝑝⟩⊥ and

A ⦂ T., Since I𝑎 ; Γ𝑜 ·Δ𝑜 ⊢c M and 𝑎 ∈ dom(Γ𝑜 ) (because 𝑎 ∈ supp(t) ∪ supp(S)), then
there exists 𝜏 s.t. Γ𝑜 (𝑎) = 𝜏 .
By writing Γ𝑜 ·Δ𝑜 ⊩ p : ¬𝜏 ⊲ Γp;Δp and taking S = ⟨Γ𝑝 ·Γp;Δ𝑝 ·Δp | Γ𝑜 ;Δ𝑜⟩, it is easy
to verify that A′ ⦂ S and P′ ⦂ ⟨Γ𝑜 ;Δ𝑜 | Γ𝑝 ·Γp · [𝑐 ↦→¬𝜏];Δ𝑝 ·Δp⟩.

□

E.2.2 Concrete observation. If an observation amounts to evaluating an observable value,

an environment configuration can only do this after a switch of perspective, i.e through a

dual↦→ci transition. For this reason we will define the obsrevation transition ⇓ci a closure on
dual↦→ci (up-to

eval↦→ci and

hdl↦→ci) such that C ⇓ci Dmeans C ↦→∗
ci
D where C and D are of opposite

perspective.

Definition E.3. Taking �⇒dual to be ( hdl↦→ci ∪
eval↦→ci)∗

dual↦→ci (
hdl↦→ci ∪

eval↦→ci)∗ we define:
C ⇓ci D :⇐⇒ ∃𝑘 ∈ N.C �⇒2∗𝑘+1

dual
D ∧ D ̸↦→ci

where, for 𝑛 ∈ N, �⇒n

dual
:=

n times︷              ︸︸              ︷
�⇒dual · · · �⇒dual.

E.2.3 Relating LAI and Lci. We observe that, by definition, the interaction between a pro-

gram and its environment given in the form of concrete interaction hides the parallel abstract
composition of the underlying complementary passive and active LAI configurations.

The following proposition captures how the ↦→ci transitions, can be equivalently re-

expressed in terms of complementarity and and the transition −→I.

Proposition E.4 (Parallel composition).

Evaluating

J ⊣⊢ I I
eval−−−→I J

⟨J ⊣⊢ I⟩ eval↦→ci ⟨J ⊣⊢ J⟩
===============================

Handling

J ⊣⊢ I J
ℎ𝑑𝑙⊖−−−→I K I

ℎ𝑑𝑙⊕−−−→I J

⟨J ⊣⊢ I⟩ hdl↦→ci ⟨J ⊣⊢ J⟩
====================================================

Dualizing

J ⊣⊢ I J
m−→I J I

m⊥
−−→I K

⟨J ⊣⊢ I⟩ dual↦→ci ⟨K ⊣⊢ J⟩
===============================================

Corollary E.5. Given I∈Confsact and J∈Confspas such that I ⊣⊢ J, we have:

⟨J ⊣⊢ I⟩ ↦→∗
ci
⟨J0 ⊣⊢ J1⟩ ⇐⇒ ∃t∈TrAI, 𝑖 ∈ {0, 1}. J

t

=⇒
I
J0 ∧ I

t
⊥
==⇒

I
J1

, Vol. 1, No. 1, Article . Publication date: July 2018.



2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

A Game Semantics Study of Virtual Effects 55

where

m
==⇒

I
:=

ℎ𝑑𝑙−−→I

eval−−−→
∗
I

m−→I

ℎ𝑑𝑙−−→I

eval−−−→
∗
I

, Vol. 1, No. 1, Article . Publication date: July 2018.



2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

56

F Adequacy
Now that all the necessary definitions are available, we will state the main intermediate

lemmas for proving adequacy: lemmas F.1 and F.2, and we will prove them in the following

sections G and H, respectively.

Lemma F.1 (Bisimilarity). Taking an interactive term I1; Γ ⊢c M and a compatible name

assignment I′
1
;𝑑 : ¬1 ⊢ 𝛾 : Γ, then:

⟨I′
1
, 𝛾 ; ⊥ ⊣⊢ M; 𝜀, ⊥⟩ ⇓ci ⟨I2; 𝛾2; ⊥ ⊣⊢ 𝑑 [ret ⟨⟩]; 𝛾1; ⊥⟩

⇐⇒
M{𝛾} ⇓op 𝑑 [ret ⟨⟩]

Lemma F.2 (Full observation). Taking an interactive term I; Γ ⊢c M and a compatible

name assignment I′;𝑑 : ¬1 ⊢ 𝛾 : Γ, then by writing G = ⟨I || T || W⟩ and H = ⟨J || S || U⟩
for their respective ogs embeddings:

∃K, 𝛾 ′. ⟨J ⊣⊢ I⟩ ⇓ci ⟨K ⊣⊢ 𝑑 [ret ⟨⟩]; 𝛾 ′; ⊥⟩
⇐⇒

∃t ∈ CTrogs(G). t⊥𝑑𝑑𝑑.⟨⟨⟨ret ⟨⟩ ||| □⟩⟩⟩⊕ ∈ CTrogs(H)

Theorem F.3 (Adeqacy). Given an interactive term I; Γ ⊢c M and a compatible name

assignment

I′;𝑑 : ¬1 ⊢ 𝛾 : Γ, then by writing P and E for their respective ogs embeddings, we have:

(M{𝛾} ⇓op 𝑑 [ ret ⟨⟩]
⇐⇒

∃t ∈ CTrogs(P). t⊥𝑑𝑑𝑑.⟨⟨⟨ret ⟨⟩ ||| □⟩⟩⟩⊕ ∈ CTrogs(E)
Proof. Follows from the two preceding lemmas. □

, Vol. 1, No. 1, Article . Publication date: July 2018.



2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

A Game Semantics Study of Virtual Effects 57

G Bisimilarity (proof of lemma F.1)
(Lci, ↦→ci) and (Λeff , ↦→op) are weakly bisimilar

We start by stating the main result of this section; that is modulo

dual↦→ci and

hdl↦→ci reductions,

the transition systems (Lci, ↦→ci) and (Λeff , ↦→op) are realted by a weak bisimulation.

Afterwards we will introduce the necessary definitions and lemmas in order to prove it.

The proof relies on a notion of telescoped substitution to avoid cycles in the concatenation
of mappings coming from the composition of two interactive configurations. This enforces

the absence of livelocks in the interaction.

Definition G.1. A telescoped substitution 𝛿 is a substitution seen as a stack of mappings

[𝑎0 ↦→ v0, . . . , 𝑎𝑘 ↦→ v𝑘 ] such that for all 𝑖 ∈ {1, . . . , 𝑘}, we have supp(v𝑖)∩{𝑎𝑖 , . . . , 𝑎𝑘 } = ∅.

Proposition G.2. Given a telescoped substitution [𝑎0 ↦→ v0, . . . , 𝑎𝑘 ↦→ v𝑘 ], for all
𝑖 ∈ {1, . . . , 𝑘}, we have supp(v𝑖) ⊆ {𝑎0, . . . , 𝑎𝑖}.

A telescoped substitution 𝛿 can be transformed into a substitution 𝛿∗ such that for any

𝑎 ∈ dom(𝛿) supp(𝛿 (𝑎)) ⊆ supp(v0).

Definition G.3. Taking a telescoped substitution 𝛿 and 𝑘 ∈ N∗
, we define the iterated

telescoped substitution 𝛿𝑖 as:

𝛿1
:= 𝛿 𝛿𝑖+1

:= Πn∈dom(𝛿 ) [n ↦→ 𝛿 (n){𝛿𝑖}]

We then define 𝛿∗ as 𝛿𝑘 with 𝑘 the size of the domain of 𝛿 . Then if Γ · Δ ⊢ 𝛿 : Γ and

dom(Δ) = supp(v0), we have Δ ⊢ 𝛿∗ : Γ.

Lemma G.4. Taking a telescoped substitution 𝛿 and 𝑎 ∈ dom(𝛿), then there exists a name

𝑎 ∈ dom(𝛿) and a natural number 𝑘 ∈ N∗
such that supp(𝛿𝑘 (𝑎)) ∩ dom(𝛿) = ∅.

We define a bisimulation between ↦→ci and ↦→op by collapsing Lci configurations into

operational ones.

Lemma G.5. Let ⟨E ⊣⊢ P⟩ ∈ Confsci such that E ⊣⊢𝑑 P. If we write E = ⟨I𝑝 ; 𝛾𝑝 ; 𝜉𝑝⟩ and
P = ⟨M; 𝛾𝑎 ; 𝛿𝑎⟩ and P ⦂ ⟨Γ𝑜 ;Δ𝑜 | Γ𝑝 ;Δ𝑝⟩, then 𝛿 = 𝛾𝑎 · 𝛾𝑝 is a telescoped substituition, and

there exists I𝑎 ·I𝑝 ; 𝑑 : ¬1 ⊢ 𝛿∗ : Γ𝑝 · Γ𝑜 .

Definition G.6. We define the function Φci

op
: Confsci → Λeff as the function:

⟨I𝑝 ; 𝛾𝑝 ; 𝜉𝑝 ⊣⊢ M; 𝛾𝑎 ; 𝛿𝑎⟩ ↦→ M{(𝛾𝑝·𝛾𝑎)∗ ·𝛿𝑒 }
with

𝛿𝑒 :=

{
𝜀 if 𝜉𝑝 = ⊥
𝛿𝑎 ·𝛿𝑝 if for some Y∈ {𝑎, 𝑝}, 𝜉𝑝 =!(𝑒, _, 𝛿𝑝)

We writeℬ
ci

op
for the functional relation corresponding to Φci

op
.

Lemma G.7. If C
dual↦→ci D or C

hdl↦→ci D, then Φci

op
(C) = Φci

op
(D) .

Proof. We proceed by case analysis knowing that C = ⟨I𝑝 ; 𝛾𝑝 ; 𝜉𝑝 ⊣⊢ P(𝑎); 𝛾𝑎 ; 𝛿𝑎⟩ and
that P(𝑎) is in normal form. □

, Vol. 1, No. 1, Article . Publication date: July 2018.



2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

58

Lemma G.8. Taking a configuration C ∈ Confsci, there exists a configuration D such that

C( dual↦→ci)∗D and D ̸ dual↦→ci.

Proof. Let’s write C as ⟨I𝑝 ; 𝛾𝑝 ; 𝜉𝑝 ⊣⊢ M; 𝛾𝑎; 𝛿𝑎⟩ and 𝛾 = [𝑎0 ↦→ v0, . . . , 𝑎n ↦→ vn] for
𝛾𝑎 ·𝛾𝑝 .
If M is not in normal form then C ̸ dual↦→ci, thus D = C. Otherwise, there exists an index

𝑘 ∈ {0, . . . , n} and a co-pattern, whose shape is either ⟨⟨⟨□ _ ||| K⟩⟩⟩ or ⟨⟨⟨_ ||| K[□] ◦◦◦ _⟩⟩⟩, such
that M = P(𝑎𝑘 ).
We proceed by induction on 𝑘 and on the length of K.

case M =⟨⟨⟨𝑓 v ||| K⟩⟩⟩ with 𝑓 ∈dom(𝛾).
Subcase 𝛾 (𝑓 ) ∈ dom(𝛾).

Since 𝛾 is a telescoped substitution, there exists ℓ ∈ {𝑘 + 1, . . . , n} such that

𝛾 (𝑓 ) = 𝑎ℓ Thus there exists a configuration D such that C
dual↦→ci C′

and whose

active component can be written as ⟨𝑑 [𝑎ℓ A]; 𝛾𝑝·𝛾A; ∅⟩ By induction hypothesis,

there exists D such that C′( dual↦→ci)∗D, and in particular C′( dual↦→ci)∗D, and D ̸ dual↦→ci.

Subcase 𝛾 (𝑓 ) ∉ dom(𝛾).
𝛾 (𝑓 ) is a 𝜆-abstraction. Then there exists a configuration D such that C

dual↦→ci D
and whose active component can be written as ⟨𝑑 [(𝜆𝑥 .t) A]; 𝛾𝑝 ·𝛾A; ∅⟩. From
which we can deduce that D

op

↦→ci and in particular that D ̸ dual↦→ci.

case M ::=⟨⟨⟨ret v ||| K[𝜅 []]⟩⟩⟩|⟨⟨⟨e ||| K[𝜅 []] ◦◦◦ S⟩⟩⟩ with 𝜅 ∈dom(𝛾).
Subcase 𝛾 (𝜅) = T[E].

Then there exists a configuration D such that C
dual↦→ci D and whose active term N

can bewritten as ⟨⟨⟨ret A ||| K[T[E]]⟩⟩⟩ inwhich case N ↦→eval, or as ⟨⟨⟨e{𝛿𝑝 } ||| K[T[E]] ◦◦◦ S⟩⟩⟩
in which case N ↦→fwd. In either case, we have D

op

↦→ci and in particular that

D ̸ dual↦→ci.

Subcase 𝛾 (𝜅) = □.
Suppose M =⟨⟨⟨ret v ||| K[𝜅 []]⟩⟩⟩, we have

C
dual↦→ci ⟨I𝑎 ; 𝛾𝑎 ; ∅ ⊣⊢⟨⟨⟨ret A ||| 𝑑 [] ⟩⟩⟩; 𝛾𝑝 ·𝛾A · [𝑑 ↦→ K]; ∅⟩
dual↦→ci ⟨I𝑝 ; 𝛾𝑝 ·𝛾A ·𝛾𝑑 ; ∅ ⊣⊢⟨⟨⟨ret B ||| K⟩⟩⟩; 𝛾𝑎 ·𝛾B; ∅⟩ = C′

We conclude by applying the induction hypothesis on C′
.

The same reasoning applied to the other case.

case M ::=⟨⟨⟨ret v ||| 𝑐 [] ⟩⟩⟩|⟨⟨⟨e ||| 𝑐 [] ◦◦◦S⟩⟩⟩.
Subcase 𝑐 ∉ dom(𝛾) Then D = C since C ̸ dual↦→ci.

Subcase 𝛾 (𝑐) ::= 𝛾 (𝑐) = 𝑎ℓ [] | K[𝑎ℓ []] with ℓ ∈ {𝑘 + 1, . . . , n}.
There exists a configurationC′

such thatC
dual↦→ci C′

and whose active component

can be written as ⟨Q(𝑎ℓ ); 𝛾𝑝 ·𝛾Q; ∅⟩ where Q is a co-pattern. We conclude using

the induction hypostesis on C′
.

□

, Vol. 1, No. 1, Article . Publication date: July 2018.



2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

A Game Semantics Study of Virtual Effects 59

Lemma G.9. Let I; Γ ⊢c M be an interactive computation and let I;Δ ⊢ 𝛾 : Γ be a name

assignment.

If M ↦→op N then M{𝛾} ↦→op N{𝛾}.

Lemma G.10. Let I; Γ ⊢c M be a computation s.t. M ↦→op and let I;Δ ⊢ 𝛾 : Γ be a name

assignment.

If M{𝛾} ↦→op N{𝛾} and supp(M) = supp(N), then M ↦→op N.

Proof. By case analysis knowing that any such term M is given by the syntax:

Nffwd ::= ⟨⟨⟨ret v ||| K[E]⟩⟩⟩ | ⟨⟨⟨(𝜆𝑥 .t) v ||| K⟩⟩⟩
| ⟨⟨⟨op v ||| K[{[]}with h] ◦◦◦ S⟩⟩⟩ (𝜄 ∈ hdl(h))
| ⟨⟨⟨𝑒 ||| K[E] ◦◦◦ S⟩⟩⟩

□

Lemma G.11. Taking a configuration C ∈Confsci s.t. Φ
ci

op
(C) ↦→op N, then there exists a

configuration D∈Confsci s.t. C �⇒ci D and Φci

op
(D) = N.

Proof. Let’s write C = ⟨I𝑝 ;𝛾𝑝 ; 𝜉𝑝 ⊣⊢ M;𝛾𝑎 ;𝛿𝑎⟩.

Case C ̸ dual↦→ci ; that is M ∉ Nf(Λeff).
By hypothesis, we have Φci

op
(C) = M{𝛾} ↦→op N′{𝛾} where 𝛾 = (𝛾𝑝 ·𝛾𝑎)∗ and N′

is such that supp(M) = supp(N′) and M = N′{𝛾}. Then from lemma G.10, we can

deduce that C
op

↦→ci ⟨I𝑝 ;𝛾𝑝 ;∅ ⊣⊢ N′;𝛾𝑎 ;∅⟩ = D where I = I𝑝 ·I′𝑎 , which entails that

Φci

op
(D) = N′{𝛾} = N.

Case C
dual↦→ci.

By lemma G.8, there exists C′
s.t. C( dual↦→ci)∗C′

and C′ ̸ dual↦→ci. Since Φ
ci

op
(C) = Φci

op
(C′)

(by lemma G.7), then by applying the above argument to C′
we can prove what we

want.

□

Lemma G.12 (bisimulation). Taking

op

�⇒ci:= ( hdl↦→ci)∗
op

↦→ci and �⇒ci:= ( dual↦→ci)∗
op

�⇒ci, there

exists a bisimulation relating (Confsci, �⇒ci) and (Λeff, ↦→op), i.e there exists a relation ℬ
ci

op
∈

℘(Confsci × Λeff) s.t. the following diagram holds.

C ℬ
ci

op
M

D ℬ
ci

op
N

ci
op

, Vol. 1, No. 1, Article . Publication date: July 2018.



2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

60

Proof. We show thatℬ
ci

op
and its converse are simulations.

C ℬ
ci

op
M

lemmas (𝐺.8)/(𝐺.7) =

C′
ℬ

ci

op
M

lemmas (𝐺.7)/(𝐺.9)

D ℬ
ci

op
∃ N

ci
dual

*

ci

op
op

C ℬ
ci

op
M

lemmas (𝐺.8)/(𝐺.7) =

∃C′
ℬ

ci

op
M

lemmas (𝐺.7)/(𝐺.10)

∃D ℬ
ci

op
N

ci
dual

*

ci

op
op

□

Corollary G.13. Taking a nominal term I; Γ; ∅ ⊢c t : 𝜏 , a compatible evaluation context

I′;Δ ⊢ K : 𝜏 ⇝ 1 and a assignment I′;Δ ⊢ 𝛾 : Γ, then:

⟨I′
1
, 𝛾 · [𝑐 ↦→𝑑 [K]]; ⊥ ⊣⊢ 𝑐 [t]; 𝜀, ⊥⟩ ⇓ci ⟨I2; 𝛾2; ⊥ ⊣⊢ 𝑑 [ret ⟨⟩]; 𝛾1; ⊥⟩

⇐⇒
K[t{𝛾}] ⇓op 𝑑 [ret ⟨⟩]

, Vol. 1, No. 1, Article . Publication date: July 2018.



2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

A Game Semantics Study of Virtual Effects 61

H Semantic observation (proof of lemma F.2)
H.1 Relating (LT , −→T ) to (LAI −→I)
Lemma H.1. Taking a well-typed interactive term in normal form I; Γ ⊢c Nf such that

abstract(Nf, 𝛿) t (𝑎𝑎𝑎.q, 𝛾, 𝛿 ·𝜉) and Γ(𝑎) = 𝜏 and Γ ⊩ q : ¬𝜏 ⊲ Γq;Δq, we have: Γ ⊢ 𝛾 : Γq
and Γ ⊢ 𝜉 : Δq.

Lemma H.2. Given a well-typed interactive term I;Δ·Γ ⊢c M and a substitution Γ′ ⊢ 𝛿 : Δ
such that Γ′ ⊆ Γ and dom(Δ) ⊆ dom(𝛿), then: I; Γ ⊢c M{𝛿}

Lemma H.3 (Subject reduction). Taking I, J∈A and T∈T such that I ⦂ T and I
𝛼−→I J,

then there exists T∈T such that T
𝛼−→T S and J ⦂ S.

Proof. We write T = ⟨Γ𝑜 ;Δ𝑜 | Γ𝑝 ;Δ𝑝⟩ and proceed by case analysis on 𝛼 .

Case 𝛼 = ℎ𝑑𝑙⊕ .

Then if we take I = ⟨M; 𝛾 ; !!!𝛿⟩, we have I ℎ𝑑𝑙⊕−−−→I ⟨M; 𝛾 ; ∅⟩ = J. It is immediate to

verify that S = ⟨Γ𝑜 ·Δ𝑜 ; ∅ | Γ𝑝 ; ∅⟩ is s.t. T ℎ𝑑𝑙⊕−−−→T S and J ⦂ S.
Case 𝛼 = ℎ𝑑𝑙⊖ .

Then if we take I = ⟨I; 𝛾 ; ???𝜉⟩ where 𝜉 = (_, _, 𝛿), we have I ℎ𝑑𝑙⊖−−−→I ⟨I; 𝛾 ·𝛿 ; ∅⟩ = J.

Similarily, it is immediate to verify that S = ⟨Γ𝑜 ; ∅ | Γ𝑝 ·Δ𝑝 ; ∅⟩ is s.t. T ℎ𝑑𝑙⊖−−−→T S and

J ⦂ S.
Case 𝛼 = 𝑎𝑎𝑎.p⊕ .

Then if wewrite I = ⟨Nf; 𝛾 ; 𝛿⟩, we have I
𝑎𝑎𝑎.p⊕

−−−→I ⟨I; 𝛾·𝛾abs; 𝜉⟩ = Jwhith abstract(Nf, 𝛿) t
(𝛾abs, 𝛿 ·𝜉).
Since I⦂T, we have I; Γ𝑜·Δ𝑜 ⊢c Nf, and since 𝑎 ∈ supp(Nf) then there exists 𝜏, Γp, Δp

such that Γ𝑜 (𝑎) = 𝜏 and Γ𝑜 ·Δ𝑝 ·Δ𝑜 ⊩ p : ¬𝜏 ⊲ Γp;Δp, so by lemma H.1, we have

Γ𝑜 ⊢ 𝛾abs : Γp and Γ𝑜 ·Δ𝑜 ⊢ 𝜉 : Δp.

Thus by taking S = ⟨Γ𝑜 ;Δ𝑜 | Γ𝑝 ·Γp;Δ𝑝 ·Δp⟩, it is immediate that T
𝑎𝑎𝑎.p⊕

−−−→T S and J ⦂ S,
knowing that I; Γ𝑜 ⊢ 𝛾 : Γ𝑝 , and I; Γ𝑜 ⊢ 𝛿 : Δ𝑝 .

Case 𝛼 = 𝑎𝑎𝑎.p⊖ .

Then if we take I = ⟨I; 𝛾 ; 𝜉⟩ where 𝜉 = (_, _, 𝛿), we have I
𝑎𝑎𝑎.p⊖

−−−→I ⟨M; 𝛾 ; 𝛿⟩ = Jwhere
M = p{𝛿}(𝛾 (𝑎)).
Let 𝜏, Γp, Δp such that Γ𝑝 (𝑎) = 𝜏 and Δ𝑝 ·Δ𝑜 ⊩ p : ¬𝜏 ⊲ Γp;Δp, then we have

T
𝑎𝑎𝑎.p⊕

−−−→T ⟨Γ𝑜 ·Γp;Δ𝑜 ·Δp | Γ𝑝 ;Δ𝑝⟩ = S.
Since I ⦂T, we have I; Γ𝑜 ⊢ 𝛾 : Γ𝑝 and I; Γ𝑜 ⊢ 𝛿 : Δ𝑝 and in particular I; Γ𝑜 ·Γp ⊢ 𝛾 : Γ𝑝
and I; Γ𝑜 ·Γp ⊢ 𝛿 : Δ𝑝 .

Moreover, since I; [𝑎 ↦→ 𝜏] ·Γp ·Δ𝑝 ·Δ𝑜 ·Δp ⊢c p(𝑎) and dom(Δ𝑜 ) = dom(𝛿), then by

lemma H.2 we have I; [𝑎 ↦→ 𝜏]·Γp·Δ𝑜 ·Δp ⊢c p{𝛿}(𝑎). Finally, given that M = p{𝛿}(𝑎)
and Γ𝑜 ⊢ 𝛾 (𝑎) : 𝜏 then we can deduce that I; Γ𝑜 ·Γp ·Δ𝑜 · Δp ⊢c M, and by extent J ⦂ S.

□

, Vol. 1, No. 1, Article . Publication date: July 2018.



2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

62

H.2 Compatibility of (LAI, −→I) and (Lwb , −→wb)
Definition H.4. We define the predicate ∧∧□ on {???, !!!}×N×𝐹 , relating an abstract forward

stack to a call frame, depending on which 𝑝𝑙𝑎𝑦𝑒𝑟 has performed the effect.

· ∧∧??? []
𝑟 ∧∧??? f

𝑟 ::𝜅′ ::𝜅 ∧∧??? 𝜅 ::f

· ∧∧!!! []
𝑟 ∧∧!!! f

𝑟 ::𝜅′ ::𝜅 ∧∧!!! 𝜅
′
::f

Definition H.5 ((LAI, Lwb )-compatibility). Let I, J ∈ A and W ∈ W s.t. I = ⟨𝛾 ; 𝜉⟩,
J = ⟨⟨⟨⟨t ||| K ◦◦◦ S⟩⟩⟩;𝛾 ′;𝛿⟩ andW = ⟨𝜎 | 𝜂 | 𝜙⟩.
We say that I andW are compatible when Compat(I, W) holds, where

Compat(I, W) :⇐⇒ ∀𝔣 ∈ 𝜙. set(𝔣) ⊆ dom(𝛾) ∧ 𝜉 ∼fwd 𝜂

Similarily, we say that J andW are compatible when Compat(J, W) holds, where

Compat(J, W) :⇐⇒ ∀𝔣 ∈ 𝜙. set(𝔣) ⊆ dom(𝛾 ′) ∧ 𝛿 ∼fwd 𝜂

with

∅ ∼fwd ∅ !!!(𝑒, _, _) ∼fwd ( [], 𝑒) ???(𝑒, 𝑟, _) ∼fwd (f , 𝑒) when 𝑟 ∧∧??? f

!!!𝛿𝑒 ∼fwd ( [], 𝑒) ???𝛿 ∼fwd (f , 𝑒) when 𝑟 ∧∧??? f and S{𝛿−1} = T ⊕ 𝑟

LemmaH.6 (preservation of compatibility). Let I ∈ A andW ∈ W s.t.Compat(I, W).
If I

𝛼−→I J andW
𝛼−→wb U, then Compat(J, U).

Proof. We writeW = ⟨𝜎 | 𝜂 | 𝜙⟩ with 𝜂 = (𝑒, 𝑓 ) then proceed by case analysis on I and
𝛼 .

Case I = ⟨I; 𝛾 ; □□ 𝜉⟩ with □□∈ {???, !!!} and 𝜉 = (𝑒, 𝑟, 𝛿).
Subcase 𝛼 = ℎ𝑑𝑙⊖ .

By hypothesis, we have 𝑟 ∧∧??? f and ∀f ′ ∈ 𝜙. set(f ′) ⊆ dom(𝛾). Moreover, we

have J = ⟨I; 𝛾 ·𝛿 ; ∅⟩ and U = ⟨𝜎 | ∅ | 𝜙 ∪ {f }⟩, thus, since set(f ) ⊆ dom(𝛿)
we can deduce that ∀f ′ ∈ 𝜙 ∪ {f }. set(f ′) ⊆ dom(𝛾 · 𝛿) and ∅ ∼fwd ∅, from

which we can conclude that Compat(J, U).
Subcase 𝛼 ::= 𝑐𝑐𝑐.⟨⟨⟨ret A ||| □⟩⟩⟩⊖ | 𝜅𝜅𝜅.⟨⟨⟨□[ret A] ||| 𝑑⟩⟩⟩⊖ | 𝑓𝑓𝑓 .⟨⟨⟨□ A ||| 𝑑⟩⟩⟩⊖ .

In either subcase, there exist M and 𝜎 ′ s.t. J = ⟨M; 𝛾 ; ∅⟩ and U = ⟨𝜎 ′ | ∅ | 𝜙⟩.
Moreover, by defintion ∅ ∼fwd ∅, and by hypothesis we have ∀f ∈ 𝜙. set(f ) ⊆
dom(𝛾), thus Compat(J, U).

Subcase 𝛼 ::= 𝑐𝑐𝑐.⟨⟨⟨𝜅 [𝑒] ||| □⟩⟩⟩⊖ | 𝜅′𝜅′𝜅′.⟨⟨⟨□[𝜅 [𝑒]] ||| 𝑑⟩⟩⟩⊖ (performing an effect).

In either subcase, there exist K, 𝜎 ′ s.t. J = ⟨⟨⟨⟨𝑒 ||| K ◦◦◦ 𝜅⟩⟩⟩; 𝛾 ; 𝜀⟩ and U = ⟨𝜎 ′ |
(𝑒, []) | 𝜙⟩.
We have then, by definition, 𝜅 ∧∧??? [] and ???𝜀 ∼fwd (𝑒, []), and by hypothesis, we

have that ∀f ∈ 𝜙. set(f ) ⊆ dom(𝛾). Thus, we can conclude that Compat(J, U).
Subcase 𝛼 ::= 𝑐𝑐𝑐.⟨⟨⟨𝜅 ::𝑟 [𝑒] ||| □⟩⟩⟩⊖ | 𝜅′𝜅′𝜅′.⟨⟨⟨□[𝜅 ::𝑟 [𝑒]] ||| 𝑑⟩⟩⟩⊖ (forwarding an effect).

In either subcase, there exist K, 𝜎 ′ such that J = ⟨⟨⟨⟨𝑒{𝛿} ||| K ◦◦◦ 𝜅 [𝑟 {𝛿}]⟩⟩⟩; 𝛾 ; □□ 𝛿⟩
and U = ⟨𝜎 ′ | 𝜂 | 𝜙⟩.
By hypothesis, we have that ∀f ∈ 𝜙. set(f ) ⊆ dom(𝛾) and 𝑟 ∧∧□□ f .

, Vol. 1, No. 1, Article . Publication date: July 2018.



3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

A Game Semantics Study of Virtual Effects 63

If □□= ???, then 𝑟 is even-length, and by taking S = 𝜅 [𝑟 {𝛿}], we have S{𝛿1} = 𝜅 ::𝑟

and 𝜅 ::𝑟 ∧∧??? f . If otherwise □□= !!!, then 𝜂 = ∅.

Thus in both cases, we have□□ 𝛿 ∼fwd 𝜂, andwe can conclude thatCompat(J, U).
Case I = ⟨⟨⟨⟨t ||| K ◦◦◦ S⟩⟩⟩; 𝛾 ; 𝛿⟩.

Subcase 𝛼 ::=𝑑𝑑𝑑.⟨⟨⟨ret A ||| □⟩⟩⟩⊕ | 𝜅𝜅𝜅.⟨⟨⟨□[ret A] ||| 𝑐⟩⟩⟩⊕ | 𝑓𝑓𝑓 .⟨⟨⟨□ A ||| 𝑐⟩⟩⟩⊕ .
In either subcase, there exist 𝛾 ′ and 𝜎 ′ s.t. J = ⟨I; 𝛾 ·𝛾 ′; ∅⟩ and U = ⟨𝜎 ′ | ∅ | 𝜙⟩.
By defintion, we have ∅ ∼fwd ∅, and by hypothesis we have ∀f ∈ 𝜙. set(f ) ⊆
dom(𝛾), and in particular ∀f ∈ 𝜙. set(f ) ⊆ dom(𝛾 ·𝛾 ′), thus Compat(J, U).

Subcase 𝛼 ::=𝑑𝑑𝑑.⟨⟨⟨𝜅 ::𝑟 [𝑒] ||| □⟩⟩⟩⊕ | 𝜅′𝜅′𝜅′.⟨⟨⟨□[𝜅 ::𝑟 [𝑒]] ||| 𝑐⟩⟩⟩⊕ .
In either subcase, there exist 𝛾 ′, 𝜎 ′, 𝜂′, S′ and T s.t. J = ⟨I; 𝛾 ·𝛾 ′; □□ 𝜉⟩ and

U = ⟨𝜎 ′ | 𝜂′ | 𝜙⟩, where S = T ⊕ S′, S{𝛿−1} = 𝑟 and 𝜉 = (𝑒, 𝑟, 𝛿 · [𝜅 ↦→ T]).
By hypothesis, we have that ∀f ∈ 𝜙. set(f ) ⊆ dom(𝛾) and 𝑟 ∧∧□□ f .
If □□= ???, then 𝑟 is odd-length and 𝜂′ = (f ++ [𝜅], 𝑒), thus 𝜅 :: 𝑟 ∧∧??? f ++ [𝜅]. If
otherwise □□= !!!, then 𝜂 = 𝜂′ = ∅.

Thus in both cases, we have□□ 𝜉 ∼fwd 𝜂, andwe can conclude thatCompat(J, U).
□

, Vol. 1, No. 1, Article . Publication date: July 2018.



3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

64

H.3 Semantic ciu-observation
Given a term I; Γ; ∅ ⊢c t : 𝜏 , an observer of t is an environment given by an evaluation

context and a name valuation (K, 𝜐) such that I′; ∅ ⊢ K : 𝜏 ⇝ 1 and I′; ∅ ⊢ 𝜐 : Γ.
We want to give a semantic characterization of "observing ⟨⟩" but first we need to

introduce the notion of closed composability of OGS configurations, which is the semantic

counterpart of t being composable with (K, 𝜐) and K[t{𝜐}] being a closed term of type 1.

H.3.1 Closed composability of OGS configurations. If complementarity guarantees the

"closedness" part of closed composability, we still require non-intial program and environ-
ment configurations to agree on their history of interaction. We will capture this coherence
of trajectory by the following synchronicity relation.
First, we will the notion of return frame and auxiliary definitions.

Definition H.7. (return frames)We will call a return frame any control-flow stack of

the shape f ++ [𝑐];i.e. that it is made up of a call frame (f ∈ List(K)) to which is appended

a single abstract undelimited continuation (𝑐 ∈ C).
We will also define the function 𭟋 that, given an evaluation stack, computes the associ-

ated return frame.

𭟋(𝑐 [S]) := 𭟋(S)++ [𝑐] 𭟋(T[𝜅 [S]]) :=𭟋(S) ++ [𝜅] 𭟋(T) := []
Definition H.8. (return frames decomposition) For any a non-empty control-flow

stack 𝜎 generated by Lwb , there corresponds a natural number 𝑘 ∈N∗
and 𝑘 return frames

𝜎1, · · · , 𝜎𝑘 such that 𝜎 = 𝜎1++· · ·++𝜎𝑘 .
We will write 𝜎1

⃝++· · · ⃝++𝜎𝑘 for this unique decomposition of 𝜎 .

Definition H.9. (Synchronicity) We define synchronicity as a quarternary relation

𝒮 ⊆ A ×W ×A ×W.

Let I = ⟨M; 𝛾I; ■𝛿I⟩ inConfsact, J = ⟨𝛾J, □(_, 𝑟 , _)⟩ inConfspaswhere M =⟨⟨⟨t ||| 𝑐0 [S0] ◦◦◦ S⟩⟩⟩
and ■,□ ∈ {?, !}, Let W = ⟨𝜎W | (fW, 𝑒W) | 𝜙W⟩, U = ⟨𝜎U | (fU, 𝑒U) | 𝜙U⟩ in W where

𝜎0
⃝++· · · ⃝++𝜎𝑘 and 𝜎 ′

0
⃝++· · · ⃝++𝜎 ′𝑝 (for some 𝑘, 𝑝 ∈N∗

) are the respective decompositions of

𝜎W and 𝜎U into return frames.

We say that ⟨I,W⟩ and ⟨J,U⟩ are in sync, and write ⟨I,W⟩𝒮 ⟨U, J⟩ when the following

holds:

• I ⊣⊢ J and for all 𝑖 ≥ 0, we can write 𝛾J(𝑐𝑖) = 𝑑𝑖+1 [S′𝑖 ] and 𝛾I(𝑑𝑖+1) = 𝑐𝑖+1 [S𝑖+1].
• 𝑟 ∧∧ ■fU and 𝑟 ∧∧ □fJ
• ∀0 ≤ 𝑖 . 𭟋(𝑐𝑖 [S𝑖]) ≃𝜙U 𝜎

′
𝑖 and 𭟋(𝛾J(𝑐𝑖)) ≃𝜙W 𝜎𝑖

where ≃𝜙 is given by

Refl

𝜋 = 𝜋 ′ 𝜙 ∈ 𝐾
𝜋 ≃𝜙 𝜋

′
𝜋 = 𝜋 ′ 𝜙 ∈ 𝐾 f ∈ 𝜙

𝜋 ≃𝜙 f ++𝜋 ′ Up-to

Next we show how the synchronicity relation indeed captures the coherence of both
the program’s and the environment’s trajectories, in the sense that whatever interaction

is triggered by the active player is in fact compatible with what the passive player is

expecting, and that this property is preserved by interaction.

This is formalised in the next lemma, which proves that 𝒮 is a simulation.

, Vol. 1, No. 1, Article . Publication date: July 2018.



3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

A Game Semantics Study of Virtual Effects 65

Lemma H.10 (O-simulation). Given K ∈ Confspas, I ∈ Confsact, W, U ∈ W such that

⟨I,W⟩𝒮 ⟨K,U⟩, we have:

I
m−→I J W

m−→wb W′

∃J,U′. K
m⊥
−−→I J U

m⊥
−−→wb U′ ⟨J,W′⟩𝒮 ⟨J,U′⟩

Proof. We write I = ⟨⟨⟨⟨t ||| 𝑐0 [S0] ◦◦◦ S⟩⟩⟩; 𝛾I, 𝛿I⟩, W = ⟨𝜎W | 𝜂W | 𝜙W⟩, W′ = ⟨𝜎W′ |
(_, 𝑟W′, _) | 𝜙W′⟩,U = ⟨𝜎U | 𝜂U | 𝜙U⟩ andK = ⟨IK; 𝛾K; 𝜉K⟩ We will also write 𝜎0

⃝++· · · ⃝++𝜎𝑘
and 𝜎 ′

0
⃝++· · · ⃝++𝜎 ′𝑝 (for some 𝑘, 𝑝 ∈N∗

) for the respective decompositions of 𝜎W and 𝜎U, as

well as 𝛾K(𝑐𝑖) = 𝑑𝑖+1 [S′𝑖 ] and 𝛾I(𝑑𝑖+1) = 𝑐𝑖+1 [S𝑖+1] for 𝑖 ≥ 0.

We proceed by case analysis on m.

Case m = 𝑐0
𝑐0𝑐0.⟨⟨⟨ret A ||| □⟩⟩⟩⊕ .

We have S0 = 𝑐0 [[]], S =[], t = ret V, 𝛿I = ∅ and 𝜂W = ∅, 𝑟W′ = ·
I, W

m−→ ⟨II; 𝛾I; ∅⟩, ⟨𝜎W′ | ∅ | 𝜙W′⟩
Since ⟨I,W⟩𝒮 ⟨K,U⟩, then 𝜎 ′

0
= 𭟋(𝑐0 [[]]) = [𝑐0] and 𝜉K = ∅. Thus U

m⊥
−−→wb ⟨𝜎U′ |

∅ | 𝜙U⟩ = U′
and K

m⊥
−−→I ⟨⟨⟨⟨ret A ||| 𝛾K(𝑐0)⟩⟩⟩; 𝛾K; ∅⟩ = J with 𝜎U′ = 𝜎 ′

1
⃝++· · · ⃝++𝜎 ′𝑝 .

First, it is clear that 𝑟W′ ∧∧ f ′
U, 𝑟W′ ∧∧ f ′

W. Second, by synchronicity, we have

𭟋(𝛾K(𝑐ℓ )) ≃𝜙W 𝜎ℓ and 𭟋(𝑐ℓ [Sℓ ]) ≃𝜙U 𝜎
′
ℓ , then if we take, forall ℓ ≥ 0, 𝑐′ℓ = 𝑑ℓ+1

and write 𝛾K(𝑐0) = 𝑐′
0
[S′

0
], then forall ℓ ≥ 0, we get 𭟋(𝑐′ℓ [S′ℓ ]) ≃𝜙W′ 𝜎ℓ and

𭟋(𝛾I(𝑐′ℓ )) ≃𝜙U′ 𝜎
′
ℓ+1

, i.e . ⟨J,W′⟩𝒮 ⟨J,U′⟩ since 𝜎W = 𝜎W′ and 𝜎U′ = 𝜎 ′
1
⃝++· · · ⃝++𝜎 ′𝑝 .

Case m =𝜅𝜅𝜅.⟨⟨⟨□[ret A] ||| 𝑑0⟩⟩⟩⊕ .
In this case, S0 must be of the shape S[𝜅 [[]]], t = ret V, 𝜉I = ∅ and 𝜂W = ∅ and

I, W
m−→ ⟨II; 𝛾I · [𝑑0 ↦→ 𝑐0 [S]]; ∅⟩, ⟨[𝑑0] ⃝++𝜎W | ∅ | 𝜙W⟩

Since ⟨I,W⟩𝒮 ⟨K,U⟩, then 𭟋(𝑐0 [S[𝜅 [[]]]]) ≃𝜙U 𝜎
′
0
and 𝜉K = ∅.

Subcase 𭟋(𝑐0 [S ◦ 𝜅]) = 𝜎 ′
0
.

There exists 𝜎 ′′
0
= 𭟋(𝑐0 [S]) s.t. 𝜎 ′0 =𝜅 ::𝜎 ′′

0
,

We have U
m⊥
−−→wb ⟨𝜎 ′′

0
++𝜎 ′U | ∅ | 𝜙U⟩ = U′

that is 𝜎U′ = 𝜎 ′′
0

⃝++𝜎 ′
1
⃝++· · · ⃝++𝜎 ′𝑝 and

K
m⊥
−−→I ⟨⟨⟨⟨ret A ||| 𝑑0 [𝛾K(𝜅)]⟩⟩⟩; 𝛾K; ∅⟩ = J.

Subcase 𭟋(𝑐0 [S ◦ 𝜅]) ≠ 𝜎 ′
0
.

There exists f ∈ 𝜙U s.t. 𭟋(𝑐0 [S ◦ 𝜅]) = f ++𝜎 ′
0
.

We have U
m⊥
−−→wb ⟨𝜎 ′′

0
++𝜎 ′U | ∅ | 𝜙U⟩ = U′

that is 𝜎U′ = 𝜎 ′′
0

⃝++𝜎 ′
1
⃝++· · · ⃝++𝜎 ′𝑝

where f =𝜅 ::f ′
and 𝜎 ′′

0
= f ′++𝜎 ′

0
and K

m⊥
−−→I ⟨⟨⟨⟨ret A ||| 𝑑0 [𝛾K(𝜅)]⟩⟩⟩; 𝛾K; ∅⟩ = J.

In either subcase, let’s write 𝑑0 [S′′0 ] for 𝑑0 [𝛾K(𝜅)] and, forall ℓ ≥ 0, S′′ℓ+1
= S′ℓ .

First, it is clear that 𝑟W′ ∧∧ f ′
U, 𝑟W′ ∧∧ f ′

W and that 𭟋(𝑑0 [S′′0 ]) ≃𝜙W′ [𝑑0] and that

𭟋(𝛾J(𝑑0)) ≃𝜙U′ 𝜎
′′
0
, since 𝜙U = 𝜙U′ , 𝜙W = 𝜙W′ and 𝛾J(𝑑0) = 𝛾I(𝑑0) = 𝑐0 [S].

Then we have, by synchronicity, forall ℓ ≥ 0, 𭟋(𝛾K(𝑐ℓ )) ≃𝜙W 𝜎ℓ and 𭟋(𝑐ℓ [Sℓ ]) ≃𝜙U

𝜎 ′ℓ , that is, forall ℓ ≥ 1, 𭟋(𝑑ℓ [S′′ℓ ]) ≃𝜙W′ 𝜎ℓ and 𭟋(𝛾I(𝑑ℓ )) ≃𝜙U′ 𝜎
′
ℓ ,

Thus we can conclude that ⟨J,W′⟩𝒮 ⟨J,U′⟩.
Case m = 𝑐0

𝑐0𝑐0.⟨⟨⟨𝜅 ::𝑟 [𝑒] ||| □⟩⟩⟩⊕ .
In this case, ⟨⟨⟨t ||| 𝑐0 [S0] ◦◦◦ S⟩⟩⟩ must be of the shape ⟨⟨⟨e ||| 𝑐0 [[]] ◦◦◦ T ⊕ S⟩⟩⟩,

Subcase e = op V.

, Vol. 1, No. 1, Article . Publication date: July 2018.



3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

66

I, W
m−→ ⟨II; 𝛾I; !!!(𝑒, 𝜅 ::𝑟, 𝛿I · [𝜅 ↦→ T])⟩, ⟨𝜎W | (fW++ [𝜅], 𝑒) | 𝜙W⟩.

Since ⟨I,W⟩𝒮 ⟨K,U⟩, then 𭟋(𝑐0 [[]]) ≃𝜙U 𝜎
′
0
, i.e 𝜎 ′

0
= [𝑐0] and 𝜉K = ???(𝑒, 𝑟, 𝛿K).

We have then K
m⊥
−−→I ⟨⟨⟨⟨𝑒 ||| 𝛾K(𝑐0) ◦◦◦ 𝜅 [𝑟 {𝛿K}]⟩⟩⟩; 𝛾K; ???(𝑒, 𝜅 :: 𝑟, 𝛿K)⟩ = J and

U
m⊥
−−→wb ⟨𝜎 ′

1
⃝++· · · ⃝++𝜎 ′𝑝 | (fU, 𝑒) | 𝜙U⟩ = U′

By synchronicity, we have 𭟋(𝛾K(𝑐ℓ )) ≃𝜙W 𝜎ℓ and 𭟋(𝑐ℓ [Sℓ ]) ≃𝜙U 𝜎
′
ℓ , 𝑟 ∧∧ !!!fW

and 𝑟 ∧∧ ?fU then if we take, forall ℓ ≥ 0, 𝑐′ℓ = 𝑑ℓ+1 and write 𝛾K(𝑐0) = 𝑐′0 [S′0],
we get 𝜅 ::𝑟 ∧∧ !!!f ′

U, 𝜅 ::𝑟 ∧∧ ?fW′ and forall ℓ ≥ 0 we get 𭟋(𝑐′ℓ [S′ℓ ]) ≃𝜙W′ 𝜎ℓ and

𭟋(𝛾I(𝑐′ℓ )) ≃𝜙U′ 𝜎
′
ℓ+1

, i.e . ⟨J,W′⟩𝒮 ⟨J,U′⟩ since 𝜎W = 𝜎W′ and 𝜎U′ = 𝜎 ′
1
⃝++· · · ⃝++

𝜎 ′𝑝 .

Subcase e = 𝑒 . I, W
m−→ ⟨II; 𝛾I; ???(𝑒, 𝜅 ::𝑟, 𝛿I · [𝜅 ↦→T])⟩, ⟨𝜎W | (fW++ [𝜅], 𝑒) | 𝜙W⟩.

Since ⟨I,W⟩𝒮 ⟨K,U⟩, then 𭟋(𝑐0 [[]]) ≃𝜙U 𝜎
′
0
, i.e 𝜎 ′

0
= [𝑐0] and 𝜉K = !!!(𝑒, 𝑟, 𝛿K).

We have then K
m⊥
−−→I ⟨⟨⟨⟨e{𝛿K} ||| 𝛾K(𝑐0) ◦◦◦ 𝜅 [𝑟 {𝛿K}]⟩⟩⟩; 𝛾K; ???(𝑒, 𝜅 ::𝑟, 𝛿K)⟩ = J and

U
m⊥
−−→wb ⟨𝜎 ′

1
⃝++· · · ⃝++𝜎 ′𝑝 | (fU, 𝑒) | 𝜙U⟩ = U′

By synchronicity, we have 𭟋(𝛾K(𝑐ℓ )) ≃𝜙W 𝜎ℓ and 𭟋(𝑐ℓ [Sℓ ]) ≃𝜙U 𝜎
′
ℓ , 𝑟 ∧∧ ?fW

and 𝑟 ∧∧ !!!fU then if we take, forall ℓ ≥ 0, 𝑐′ℓ = 𝑑ℓ+1 and write 𝛾K(𝑐0) = 𝑐′0 [S′0],
we get 𝜅 ::𝑟 ∧∧ ?f ′

U, 𝜅 ::𝑟 ∧∧ !!!fW′ and forall ℓ ≥ 0 we get 𭟋(𝑐′ℓ [S′ℓ ]) ≃𝜙W′ 𝜎ℓ and

𭟋(𝛾I(𝑐′ℓ )) ≃𝜙U′ 𝜎
′
ℓ+1

, i.e . ⟨J,W′⟩𝒮 ⟨J,U′⟩ since 𝜎W = 𝜎W′ and 𝜎U′ = 𝜎 ′
1
⃝++· · · ⃝++

𝜎 ′𝑝 .

Case m =𝜅𝜅𝜅.⟨⟨⟨□[𝑟 [𝑒]] ||| 𝑑0⟩⟩⟩⊕ . Similar reasoning applies.

□

Corollary H.11. Given J ∈ Confspas, I ∈ Confsact, W, U ∈ W and a trace t such that

⟨J,W⟩𝒮 ⟨I,U⟩, t∈TrLAI
(I) and TrLAI

(J) then:

t∈TrLwb (W) ∧ t
⊥ ∈TrLwb (U)

Proof. By induction on the length of t using Lemma H.10. □

Definition H.12. (Composability) Given a passive configuration G∈O⊖
and an active

one H∈O⊕
such that G = ⟨I || T || W⟩ and H = ⟨J || S || U⟩, we say that G and H are closed

composable and write GyH when:

G = ⟨I || T || W⟩ H = ⟨J || S || U⟩ ⟨I,W⟩𝒮 ⟨J,U⟩
GyH

Remark 8. The preservation of closed composability by configuration synchronization

follows from lemmas E.2 and H.10.

H.3.2 OGS Observation. Now we can semantically capture K[t{𝜐}] ⇓op ⟨⟩ by the follow-

ing predicate.

Definition H.13. (Observation predicate) Taking a passive configuration G∈O⊖
and

an active one H∈O⊕
such that GyH, we define the observation of G on H as the predicate:

⟨GyH⟩ ⇓ [𝑐]ret ⟨⟩ :⇐⇒ ∃K, 𝛾 . ⟨J ⊣⊢ I⟩ ⇓ci ⟨K ⊣⊢ 𝑐 [ret ⟨⟩]; 𝛾 ; ⊥⟩

, Vol. 1, No. 1, Article . Publication date: July 2018.



3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

A Game Semantics Study of Virtual Effects 67

The soundness of this observation predicate follows from Theorem F.1, Lemmas E.2,

H.3, H.10. Its completeness is a consequence of the following result: the definability of

configurations that are composable with an initial active configuration.

Lemma H.14 (OGS definability). Taking an initial activeOGS configurationG = ⟨I; Γ ⊢
𝑑 [t] : ⊥⟩ogs, then for all passive OGS configuration H such that GyH, there exist:

• a continuation name: 𝑐f
• an evaluation context: 𝑐f : ¬𝜐 ⊢ K : ¬𝜏 ,
• a name valuation: I′; ∅ ⊢ 𝜐 : Γ,

such that H = ⟨I′; 𝑐f : ¬𝜐 ⊢ [𝑑 ↦→ K] ·𝜐⟩ogs
Proof. We will write G = ⟨I || T || W⟩ with I = ⟨𝑑 [t]; 𝜀; ∅⟩, T = ⟨Γ; ∅ | ∅; ∅⟩ and

W = ⟨[] | ∅ | ∅⟩. We will also writeH = ⟨J || S || U⟩ with J = ⟨I′; 𝛾 ; 𝜉⟩ andU = ⟨𝜎 | 𝜂 | 𝜙⟩.
By complementarity, we have (1) supp(𝑑 [t]) ⊆ dom(𝛾), and (2) there exist a type 𝜐 and

continuation name 𝑐f ∈ codom(𝛾) s.t. S = ⟨[𝑐f ↦→ ¬𝜐]; ∅ ⊣⊢ Γ; ∅⟩.
(1) ensures the existence of a name valuation 𝜐 s.t. dom(𝜐) = supp(t) and an interactive

context K s.t.𝛾 = [𝑑 ↦→ K]·𝜐, whereas (2) entails I′; [𝑐f ↦→ ¬𝜐] ⊢ 𝛾 : Γ and dom(𝛾) = dom(Γ).
I′; 𝑐f : ¬𝜐 ⊢ K : Γ(𝑑) and I′; ∅ ⊢ 𝜐 : Γ.
By compatibility of configurations J and U, we have supp(𝜙) ⊆ dom(𝜐) ∩ K , and since

dom(𝜐) = supp(t) and supp(t) ∩ K = ∅, then 𝜙 = ∅.
By synchronicity, we have 𭟋(𝛾 (𝑑)) ≃∅ 𝜎 ; that is 𭟋(K) = [𝑐f ] = 𝜎 , and we also have

𝜉 = ∅, which again by compatibility entails that ∅ ∼fwd 𝜂 and 𝜂 = ∅.

Finally, we have shown that H = ⟨⟨I′; 𝛾 ; ∅⟩ || ⟨[𝑐f ↦→ ¬𝜐]; ∅ ⊣⊢ Γ; ∅⟩ || ⟨[𝑐f ] | ∅ | ∅⟩⟩,
i.e. H = ⟨I′; 𝑐f : ¬𝜐 ⊢ [𝑑 ↦→ K] ·𝜐⟩ogs.

□

Corollary H.15 (completeness of observation). Taking two initial active OGS con-

figurations G1 = ⟨I; Γ ⊢c M1⟩ogs and G1 = ⟨I; Γ ⊢c M2⟩ogs such that M1 ≃𝑐𝑖𝑢 M2, then:

∀H∈O s.t. HyG1 and HyG2.

⟨HyG1⟩ ⇓ [𝑐]ret ⟨⟩ if and only if ⟨HyG2⟩ ⇓ [𝑐]ret ⟨⟩

H.4 Interpretation of observation
We have given a sensible notion of observation at the level of OGS configurations, it

remains to show what does this predicate mean at the level of OGS interpretations.

Theorem H.16 (full observation). Given two composable configurations G and H, we
have:

⟨HyG⟩ ⇓ [𝑐]ret ⟨⟩ if and only if ∃t ∈ CTrogs(G). t⊥ 𝑐𝑐𝑐.⟨⟨⟨ret ⟨⟩ ||| □⟩⟩⟩⊕ ∈ CTrogs(H)
Proof. We write G = ⟨I || T || W⟩ and H = ⟨J || S || U⟩ and I = ⟨t; 𝛾I; 𝜉⟩

Left to right. Suppose there exist K, J ∈ A and 𝛾 such that ⟨J ⊣⊢ I⟩ ⇓ci ⟨K ⊣⊢ J⟩ with
J = ⟨𝑐 [ret ⟨⟩]; 𝛾 ; ∅⟩.
By corollary E.5 and definition E.3, there exists an odd-length trace t such that I

t

=⇒
I
K

and J
t
⊥
==⇒

I
J

𝑐𝑐𝑐.⟨⟨⟨ret ⟨⟩|||□⟩⟩⟩⊕
===========⇒

I
⟨𝛾 ; ∅⟩ = J′. By lemma H.3, there exist T′, S′, S′′ ∈ T

, Vol. 1, No. 1, Article . Publication date: July 2018.



3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

68

s.t. T
t−→T T′

, S
t
⊥
−→T S′

𝑐𝑐𝑐.⟨⟨⟨ret ⟨⟩|||□⟩⟩⟩⊕
−−−−−−−−−−→T S′′, K ⦂ T′

, J′ ⦂ S′ and J′ ⦂ S′′. Similarily,

corollary H.11 ensures the existence of W′,U′,U′′ ∈ W s.t. W
t−→wb W′

, U
t
⊥
−→wb

U′ 𝑐𝑐𝑐.⟨⟨⟨ret ⟨⟩|||□⟩⟩⟩⊕
−−−−−−−−−−→wb U′′

whereas lemma H.10 ensures that synchronicity is preserved

and that in particular ⟨J,U′⟩𝒮 ⟨K,W′⟩.
Thus we have shown that G

t

=⇒
ogs

⟨K || T′ || W′⟩ and H
t
⊥
==⇒

ogs

⟨J || S′ ||

U′⟩
𝑐𝑐𝑐.⟨⟨⟨ret ⟨⟩|||□⟩⟩⟩⊕
===========⇒

ogs

⟨J′ || S′′ || U′′⟩, from which we can deduce that t ∈ Trogs(G)

and t
⊥ 𝑐𝑐𝑐.⟨⟨⟨ret ⟨⟩ ||| □⟩⟩⟩⊕ ∈ Trogs(H).

Right to left. Let t ∈ Trogs such that t ∈ Trogs(G) and t
⊥ 𝑐𝑐𝑐.⟨⟨⟨ret ⟨⟩ ||| □⟩⟩⟩⊕ ∈ Trogs(H).

If we write G
t

=⇒
ogs

⟨K || T′ || W′⟩ and for some W′ ∈W with K = ⟨IK; 𝛾K; ∅⟩ ∈A,

and writeH
t
⊥
==⇒

ogs

⟨J || S′ || U′⟩
𝑐𝑐𝑐.⟨⟨⟨ret ⟨⟩|||□⟩⟩⟩⊕
−−−−−−−−−−→ogs E for some S′ ∈T ,U′ ∈W andE∈O

with J = ⟨𝑐 [ret ⟨⟩]; 𝛾 ; ∅⟩, then by corollary E.5, we have ⟨J ⊣⊢ I⟩ ↦→∗
ci
⟨J ⊣⊢ K⟩

and again by lemma E.2, we have J ⊣⊢𝑐 K, and in particular 𝑐 ∉ dom(𝛾J), thus
⟨J ⊣⊢ K⟩ ̸↦→ci. Finally, we have shown that ⟨J ⊣⊢ I⟩ ⇓ci ⟨J ⊣⊢ K⟩ and consequently

⟨HyG⟩ ⇓ [𝑐]ret ⟨⟩.
□

, Vol. 1, No. 1, Article . Publication date: July 2018.


	Abstract
	1 Introduction
	2 Background material on Operational Game Semantics (OGS)
	3 Programming Language
	3.1 Syntax of eff
	3.2 Operational semantics
	3.3 Metatheory

	4 Abstract Interaction
	4.1 Nominal abstraction
	4.2 Abstract Interactive LTS

	5 From traces to handling structures
	5.1 Trace equivalence is too fine
	5.2 Handling structures

	6 The Operational game semantics model
	6.1 The OGS LTS
	6.2 Typing Constraints
	6.3 Well-bracketing Constraints
	6.4 Interpretation of expressions
	6.5 Visibility and Innocence
	6.6 The View, Revisited

	7 Soundness of the model
	8 Completeness of the model
	9 Conclusion and related work
	References
	A Disclosure of effect instances
	B Concrete Interaction
	C Abstract Interaction
	D Well-bracketing LTS
	E Concrete Interaction
	E.1 Concrete interaction LTS
	E.2 Properties of the CI LTS

	F Adequacy
	G Bisimilarity (proof of lemma F.1)
	H Semantic observation (proof of lemma F.2)
	H.1 Relating (LT, T) to (LAI I)
	H.2 Compatibility of (LAI, I) and (Lwb, wb)
	H.3 Semantic ciu-observation
	H.4 Interpretation of observation


