Operational Game Semantics for generative algebraic
effects and handlers

(work in progress)

Hamza JAAFAR, Guilhem JABER

Nantes Universite, LS2N, INRIA Gallinette

January 14, 2024

1/25

Algebraic effects and handlers

e Impure behaviour given by operations on computations®

(e.g choose for non-deterministic choice, raise for exceptions...)

'Gordon Plotkin and John Power. “Semantics for algebraic operations”. In:

Electronic Notes in Theoretical Computer Science 45 (2001), pp. 332-345.
2/25

Algebraic effects and handlers

o Impure behaviour given by operations on computations!

(e.g choose for non-deterministic choice, raise for exceptions...)

@ Impure behaviour is described by an equational theory on these
operations

!Gordon Plotkin and John Power. “Semantics for algebraic operations”. In:

Electronic Notes in Theoretical Computer Science 45 (2001), pp. 332-345.
2/25

Algebraic effects and handlers

o Impure behaviour given by operations on computations!

(e.g choose for non-deterministic choice, raise for exceptions...)

@ Impure behaviour is described by an equational theory on these
operations

@ Account for monadic effects whose behaviour is independent of the
current evaluation context

!Gordon Plotkin and John Power. “Semantics for algebraic operations”. In:

Electronic Notes in Theoretical Computer Science 45 (2001), pp. 332-345.
2/25

Algebraic effects and handlers

o Impure behaviour given by operations on computations!

(e.g choose for non-deterministic choice, raise for exceptions...)

@ Impure behaviour is described by an equational theory on these
operations

@ Account for monadic effects whose behaviour is independent of the
current evaluation context

choose(E[M], E[N]) ~op E[choose(M, N)]

!Gordon Plotkin and John Power. “Semantics for algebraic operations”. In:

Electronic Notes in Theoretical Computer Science 45 (2001), pp. 332-345.
2/25

Algebraic effects and handlers

o Impure behaviour given by operations on computations!

(e.g choose for non-deterministic choice, raise for exceptions...)

@ Impure behaviour is described by an equational theory on these
operations

@ Account for monadic effects whose behaviour is independent of the
current evaluation context

choose(E[M], E[N]) ~op E[choose(M, N)]

@ Easier to structure compared to combining monadic effects.

!Gordon Plotkin and John Power. “Semantics for algebraic operations”. In:

Electronic Notes in Theoretical Computer Science 45 (2001), pp. 332-345.
2/25

Algebraic effects and handlers

o Impure behaviour given by operations on computations!

(e.g choose for non-deterministic choice, raise for exceptions...)

@ Impure behaviour is described by an equational theory on these
operations

@ Account for monadic effects whose behaviour is independent of the
current evaluation context

choose(E[M], E[N]) ~op E[choose(M, N)]

@ Easier to structure compared to combining monadic effects.

@ Handlers arise as homomorphisms between models of such algebraic
theories.

'Gordon Plotkin and John Power. “Semantics for algebraic operations”. In:

Electronic Notes in Theoretical Computer Science 45 (2001), pp. 332-345.
2/25

Algebraic effects and Handlers, programmatically

o Effect operations are constructors or producers of effects.

3/25

Algebraic effects and Handlers, programmatically

o Effect operations are constructors or producers of effects.

@ Handlers are destructors for effects.

3/25

Algebraic effects and Handlers, programmatically

o Effect operations are constructors or producers of effects.

@ Handlers are destructors for effects.

A generalization of exception handlers (constructs such as try
try - - - with) that can capture the delimited continuation.

... catch or

3/25

Operations and effect handlers, concretely

Every operation symbol op comes with an arity

op : T—ooOo

4/25

Operations and effect handlers, concretely

Every operation symbol op comes with an arity

op : T—ooOo

o Performing an effect: op V

4/25

Operations and effect handlers, concretely

Every operation symbol op comes with an arity

op : T—ooOo

o Performing an effect: op V

@ Handling an effect:

H= {return x — N} (return case)
{op p Kk — M} (op case)

4/25

Operations and effect handlers, concretely

An effect E is typed by its signature g = {(op; : 77 — 0});}

5/25

Operations and effect handlers, concretely

An effect E is typed by its signature g = {(op; : 77 — 0});}
Example (Global state)

Elte = {set:7 — 1l,get:1 — 7}

5/25

Operations and effect handlers, concretely

An effect E is typed by its signature g = {(op; : 77 — 0});}
Example (Global state)

Elye={set:7— 1,get:1— 7}

What if we want multiple states holding values of the type 7.

5/25

Operations and effect handlers, concretely

An effect E is typed by its signature g = {(op; : 77 — 0});}
Example (Global state)

Elye={set:7— 1,get:1— 7}

What if we want multiple states holding values of the type 7.

Generally, how to deal with multiple occurences of the same effect type E
without forefeiting modularity?

5/25

The Eff> approach

Use of a distinct identifier (names) ¢ for each instance of an effect E.

2Andrej Bauer and Matija Pretnar. "Programming with algebraic effects and
handlers”. In: Journal of Logical and Algebraic Methods in Programming 84.1 (2015).
Special Issue: The 23rd Nordic Workshop on Programming Theory (NWPT 2011)
Special Issue: Domains X, International workshop on Domain Theory and applications,

Swansea, 5-7 September, 2011, pp. 108-123.
6/25

The Eff> approach

Use of a distinct identifier (names) ¢ for each instance of an effect E.

@ Performing an effect: (#opg V
e Handling an effect: H = {t#opg p k — M} (1#opg case)

2Andrej Bauer and Matija Pretnar. "Programming with algebraic effects and
handlers”. In: Journal of Logical and Algebraic Methods in Programming 84.1 (2015).
Special Issue: The 23rd Nordic Workshop on Programming Theory (NWPT 2011)
Special Issue: Domains X, International workshop on Domain Theory and applications,

Swansea, 5-7 September, 2011, pp. 108-123.
6/25

Programming Language

6/25

Syntax: Fine-grained call-by-value

Values V,W
Terms M, N
Handlers H
ECxts £

(1>

(1>

[>

X | Ax:TM| ¢

return V | V V | match V with (P; — N;);¢/
|letx =M inN

| V#op W | handle M with H

{return x — M} | {V#op x k — M} WH

o |letx=¢& inM | handle £ with H

7/25

Dynamic generation of effects

7/25

New construct

Given an effect given by the type (signature) E.

A

New construct: M,N -+ |newE

8/25

New construct

Given an effect given by the type (signature) E.

A

New construct: M,N -+ |newE

Operational Semantics: (newE; V) — (return ; V W {})

8/25

Disclosure and contextual equivalence

Consider the following variation of an example from3

f (Ax.5)

®Dariusz Biernacki et al. “Handle with care: relational interpretation of algebraic
effects and handlers”. In: Proceedings of the ACM on Programming Languages 2.POPL

(2017), pp. 1-30.
9/25

Disclosure and contextual equivalence

Consider the following variation of an example from3

f (Ax.5)

ctx

let y =newE in
handle

f (Ax.y#op ()
with {return x — returnx}

{y#op x Kk Kk 5}

3Dariusz Biernacki et al. “"Handle with care: relational interpretation of algebraic
effects and handlers”. In: Proceedings of the ACM on Programming Languages 2.POPL

(2017), pp. 1-30.
9/25

Disclosure and contextual equivalence (cont.)

Now consider a variation of the previous example:

lety =newE ingy; f (Ax.5)

10/25

Disclosure and contextual equivalence (cont.)

Now consider a variation of the previous example:

lety =newE ingy; f (Ax.5)

;ﬁ ctx

let y =newE in
handle

g y; f(Axy#op())
with {return x — return x}

{y#top x kK — K 5}

10/25

Operational game semantics model

10/25

Existing fully-abstract models for effect handlers

Adaptation of Lassen’s normal-form bisimulation®

*Dariusz Biernacki, Serguei Lenglet, and Piotr Polesiuk. “A complete normal-form
bisimilarity for algebraic effects and handlers”. In: Formal Structures for Computation

and Deduction. 2020.
11/25

Existing fully-abstract models for effect handlers

Adaptation of Lassen’s normal-form bisimulation®

@ Untyped calculus, global set of operations

*Dariusz Biernacki, Serguei Lenglet, and Piotr Polesiuk. “A complete normal-form
bisimilarity for algebraic effects and handlers”. In: Formal Structures for Computation
and Deduction. 2020.

11/25

Existing fully-abstract models for effect handlers

Adaptation of Lassen’s normal-form bisimulation®
@ Untyped calculus, global set of operations

@ Completeness of the model does not rely on having additional stateful
effect in the language.

*Dariusz Biernacki, Serguei Lenglet, and Piotr Polesiuk. “A complete normal-form
bisimilarity for algebraic effects and handlers”. In: Formal Structures for Computation
and Deduction. 2020.

11/25

Existing fully-abstract models for effect handlers

Adaptation of Lassen’s normal-form bisimulation®
@ Untyped calculus, global set of operations

@ Completeness of the model does not rely on having additional stateful
effect in the language.

*Dariusz Biernacki, Serguei Lenglet, and Piotr Polesiuk. “A complete normal-form
bisimilarity for algebraic effects and handlers”. In: Formal Structures for Computation
and Deduction. 2020.

11/25

Operational Game Semantics OGS

@ Trace semantics following the operational evaluation of a program
(Proponent) and tracing its interaction with its environment
(Opponent).

12/25

Operational Game Semantics OGS

@ Trace semantics following the operational evaluation of a program
(Proponent) and tracing its interaction with its environment
(Opponent).

@ A trace is an alternating sequence of P-moves (noted with an
overline) and O-moves, they can either be:

12/25

Operational Game Semantics OGS

@ Trace semantics following the operational evaluation of a program
(Proponent) and tracing its interaction with its environment
(Opponent).

@ A trace is an alternating sequence of P-moves (noted with an
overline) and O-moves, they can either be:

» Questions:

fla,c) | f(a¢)

(requesting the result of f A as an answer in ¢)

12/25

Operational Game Semantics OGS

@ Trace semantics following the operational evaluation of a program
(Proponent) and tracing its interaction with its environment
(Opponent).

@ A trace is an alternating sequence of P-moves (noted with an
overline) and O-moves, they can either be:

» Questions:

fla,c) | f(a¢)

(requesting the result of f A as an answer in ¢)
> Answers:

12/25

Examples

Let’s consider the trace of
f (Ax.5)

representing the interaction with the environment given by the evaluation
context

let f = (\g.g V;return true) in|]

13/25

Examples

Let’s consider the trace of
f (Ax.5)

representing the interaction with the environment given by the evaluation
context

let f = (\g.g V;return true) in|]

yielding the trace B
f(g,c)

13/25

Examples

Let’s consider the trace of
f (Ax.5)

representing the interaction with the environment given by the evaluation
context

let f = (\g.g V;return true) in|]

yielding the trace B
f(g,c) g(4, d)

13/25

Examples

Let’s consider the trace of
f (Ax.5)

representing the interaction with the environment given by the evaluation
context

let f = (\g.g V;return true) in|]

yielding the trace B B
f(g,c) (4, d) d(5)

13/25

Examples

Let’s consider the trace of
f (Ax.5)

representing the interaction with the environment given by the evaluation
context

let f = (\g.g V;return true) in|]

yielding the trace B B
f(g,c) g(4, d) d(5) c(true)

13/25

Operational Game Semantics (cont.)

Normal Forms:
Mps = E[f V] | return V

14 /25

Operational Game Semantics (cont.)

Normal Forms:
Mps = E[f V] | return V

o E[f V] calls for a P-question of the shape f(A, c)

14 /25

Operational Game Semantics (cont.)

Normal Forms:
Mps = E[f V] | return V

o E[f V] calls for a P-question of the shape f(A, c)

@ return V/ calls for an answer of the shape ¢(4)

14/25

Operational Game Semantics (cont.)

Normal Forms:
Mps = E[f V] | return V

o E[f V] calls for a P-question of the shape f(A, c)
@ return V/ calls for an answer of the shape ¢(4)

The denotation [M]ogs of a given program M is the set of all possible traces
generated by M

14/25

OGS model for algebraic effects and handlers

Algebraic effects introduce new normal forms:

Mus = -+ | E[t#op V] when (#op ¢ hdl(€)

15/25

OGS model for algebraic effects and handlers

Algebraic effects introduce new normal forms:

Mus = -+ | E[t#op V] when (#op ¢ hdl(€)

Extending the interaction interface with new moves that account for
observable effectful operations.

15/25

OGS model for algebraic effects and handlers

Algebraic effects introduce new normal forms:

Mus = -+ | E[t#op V] when (#op ¢ hdl(€)

Extending the interaction interface with new moves that account for
observable effectful operations.

But, what counts as observable?

15/25

Accomodating the OGS model for effect name disclosure

When the program performs an effect

t#op V

16 /25

Accomodating the OGS model for effect name disclosure

When the program performs an effect
t#op V

@ Public: Opponent could potentially handle the effect.

16 /25

Accomodating the OGS model for effect name disclosure

When the program performs an effect
t#op V

@ Public: Opponent could potentially handle the effect.

@ Private: Opponent can only forward the effect to any enclosing
Player's handling context.

16 /25

Accomodating the OGS model for effect name disclosure

Algebraic effects introduce new normal forms:

Mus = -+ | E[etop V] when (#op ¢ hdl(&)

17/25

Accomodating the OGS model for effect name disclosure

Algebraic effects introduce new normal forms:

Mus = -+ | E[etop V] when (#op ¢ hdl(&)

@ observable effect move: C[tftop A K]

17/25

Accomodating the OGS model for effect name disclosure

Algebraic effects introduce new normal forms:

Mus = -+ | E[etop V] when (#op ¢ hdl(&)

@ observable effect move: C[tftop A K]

e private effect: fwd(x)

17/25

o Recall the trace of M; = f (\x.5)

tw, = f(g,c) g(4, d) d(5) c(true)

representing the interaction with the environment given by the
evaluation context

let f = (Ag.g V;return true) in|]

18/25

o Recall the trace of M; = f (\x.5)

tw, = f(g,c) g(4, d) d(5) c(true)

representing the interaction with the environment given by the
evaluation context

let f = (Ag.g V;return true) in|]

@ Recall that the following term is equivalent to M;

let y =newE in
handle

My £ f(Axy#op())
with {return x — returnx}

{y#op x K+ Kk 5}

18/25

Now we look at how M5 interacts with the same environement

let f = (A\g.g V;return true) in|]

19/25

Now we look at how M5 interacts with the same environement

let f = (A\g.g V;return true) in|]

M, evaluates to
handle 7 (Ax..#op ()) with {t#op x kK +— K 5}

then ..

19/25

Now we look at how M5 interacts with the same environement

let f = (A\g.g V;return true) in|]

M, evaluates to
handle 7 (Ax..#op ()) with {t#op x kK +— K 5}

then ..

th = ?(ga C)

19/25

Now we look at how M5 interacts with the same environement

let f = (A\g.g V;return true) in|]

M, evaluates to
handle 7 (Ax..#op ()) with {t#op x kK +— K 5}

then ..

tu, = 7 (g, ¢) g(A,d)

19/25

Now we look at how M5 interacts with the same environement

let f = (A\g.g V;return true) in|]

M, evaluates to
handle 7 (Ax..#op ()) with {t#op x kK +— K 5}

then ..

tu, = 7 (g, ¢) g(A, d) fwd(ry)

19/25

Now we look at how M5 interacts with the same environement

let f = (A\g.g V;return true) in|]

M, evaluates to
handle 7 (Ax..#op ()) with {t#op x kK +— K 5}

then ..

i, = (g, <) (A, d) wd(rg) 73(5,)

19/25

Now we look at how M5 interacts with the same environement

let f = (A\g.g V;return true) in|]

M, evaluates to
handle 7 (Ax..#op ()) with {t#op x kK +— K 5}

then ..

ty, = (g, c) g(4,d) fwd(ry) 7g(5, ') ¢'(true)

19/25

Because of this, we get

[M1]ogs # [M2]ogs

20/25

Because of this, we get

[M1]ogs # [M2]ogs

We need a coarser notion of trace equivalence in which

f(g,c) g(a, d) d(5) c(true)

~tr

(g, c) g(&,d) fwd(rq) 7a(5, ¢') c(true)

20/25

Full-abstraction

Theorem (Soundness) J

>y C© e

21/25

Full-abstraction

Theorem (Soundness)

>y C© e

Conjecture (Completeness)

~ex © gy

21/25

Conclusion

o Contextual equivalence is more subtle in the presence of generativity
of first-class effect instances.

@ Extending OGS model to account for observable and private effectful
behaviour.

@ Relaxing trace equivalence to coincide with the contextual one.

22/25

QUESTIONS?

References

[1]

2]

[3]

[4]

Gordon Plotkin and John Power. “Semantics for algebraic
operations”. In: Electronic Notes in Theoretical Computer Science 45
(2001), pp. 332-345.

Andrej Bauer and Matija Pretnar. “Programming with algebraic
effects and handlers” . In: Journal of Logical and Algebraic Methods in
Programming 84.1 (2015). Special Issue: The 23rd Nordic Workshop
on Programming Theory (NWPT 2011) Special Issue: Domains X,
International workshop on Domain Theory and applications, Swansea,
5-7 September, 2011, pp. 108-123.

Dariusz Biernacki et al. "Handle with care: relational interpretation of
algebraic effects and handlers”. In: Proceedings of the ACM on
Programming Languages 2.POPL (2017), pp. 1-30.

Dariusz Biernacki, Serguei Lenglet, and Piotr Polesiuk. “A complete
normal-form bisimilarity for algebraic effects and handlers”. In:
Formal Structures for Computation and Deduction. 2020.

24/ 25

Operational Semantics

(E[newE]; V) — (E[return o; V W {1})

(€[handle (return V) with H]|; V)
— (EM{x :=V}];V) when H™®"™ = {return x — M}

(E[handle &'[#o0p V] with H]; V)
— (EM{x := V}{k := Ay.handle &'[return y] with H}]; V)
when HP = {1#op x Kk — M}
and #op ¢ hdl(&')

25/25

	Programming Language
	Dynamic generation of effects
	Operational game semantics model
	References

