
Operational Game Semantics for generative algebraic
effects and handlers

(work in progress)

Hamza JAAFAR, Guilhem JABER

Nantes Universite, LS2N, INRIA Gallinette

January 14, 2024

1 / 25

Algebraic effects and handlers

Impure behaviour given by operations on computations1

(e.g choose for non-deterministic choice, raise for exceptions...)

Impure behaviour is described by an equational theory on these
operations

Account for monadic effects whose behaviour is independent of the
current evaluation context

choose(E [M], E [N]) ∼op E [choose(M, N)]

Easier to structure compared to combining monadic effects.

Handlers arise as homomorphisms between models of such algebraic
theories.

1Gordon Plotkin and John Power. “Semantics for algebraic operations”. In:
Electronic Notes in Theoretical Computer Science 45 (2001), pp. 332–345.

2 / 25

Algebraic effects and handlers

Impure behaviour given by operations on computations1

(e.g choose for non-deterministic choice, raise for exceptions...)

Impure behaviour is described by an equational theory on these
operations

Account for monadic effects whose behaviour is independent of the
current evaluation context

choose(E [M], E [N]) ∼op E [choose(M, N)]

Easier to structure compared to combining monadic effects.

Handlers arise as homomorphisms between models of such algebraic
theories.

1Gordon Plotkin and John Power. “Semantics for algebraic operations”. In:
Electronic Notes in Theoretical Computer Science 45 (2001), pp. 332–345.

2 / 25

Algebraic effects and handlers

Impure behaviour given by operations on computations1

(e.g choose for non-deterministic choice, raise for exceptions...)

Impure behaviour is described by an equational theory on these
operations

Account for monadic effects whose behaviour is independent of the
current evaluation context

choose(E [M], E [N]) ∼op E [choose(M, N)]

Easier to structure compared to combining monadic effects.

Handlers arise as homomorphisms between models of such algebraic
theories.

1Gordon Plotkin and John Power. “Semantics for algebraic operations”. In:
Electronic Notes in Theoretical Computer Science 45 (2001), pp. 332–345.

2 / 25

Algebraic effects and handlers

Impure behaviour given by operations on computations1

(e.g choose for non-deterministic choice, raise for exceptions...)

Impure behaviour is described by an equational theory on these
operations

Account for monadic effects whose behaviour is independent of the
current evaluation context

choose(E [M], E [N]) ∼op E [choose(M, N)]

Easier to structure compared to combining monadic effects.

Handlers arise as homomorphisms between models of such algebraic
theories.

1Gordon Plotkin and John Power. “Semantics for algebraic operations”. In:
Electronic Notes in Theoretical Computer Science 45 (2001), pp. 332–345.

2 / 25

Algebraic effects and handlers

Impure behaviour given by operations on computations1

(e.g choose for non-deterministic choice, raise for exceptions...)

Impure behaviour is described by an equational theory on these
operations

Account for monadic effects whose behaviour is independent of the
current evaluation context

choose(E [M], E [N]) ∼op E [choose(M, N)]

Easier to structure compared to combining monadic effects.

Handlers arise as homomorphisms between models of such algebraic
theories.

1Gordon Plotkin and John Power. “Semantics for algebraic operations”. In:
Electronic Notes in Theoretical Computer Science 45 (2001), pp. 332–345.

2 / 25

Algebraic effects and handlers

Impure behaviour given by operations on computations1

(e.g choose for non-deterministic choice, raise for exceptions...)

Impure behaviour is described by an equational theory on these
operations

Account for monadic effects whose behaviour is independent of the
current evaluation context

choose(E [M], E [N]) ∼op E [choose(M, N)]

Easier to structure compared to combining monadic effects.

Handlers arise as homomorphisms between models of such algebraic
theories.

1Gordon Plotkin and John Power. “Semantics for algebraic operations”. In:
Electronic Notes in Theoretical Computer Science 45 (2001), pp. 332–345.

2 / 25

Algebraic effects and Handlers, programmatically

Effect operations are constructors or producers of effects.

Handlers are destructors for effects.

A generalization of exception handlers (constructs such as try · · · catch or
try · · ·with) that can capture the delimited continuation.

3 / 25

Algebraic effects and Handlers, programmatically

Effect operations are constructors or producers of effects.

Handlers are destructors for effects.

A generalization of exception handlers (constructs such as try · · · catch or
try · · ·with) that can capture the delimited continuation.

3 / 25

Algebraic effects and Handlers, programmatically

Effect operations are constructors or producers of effects.

Handlers are destructors for effects.

A generalization of exception handlers (constructs such as try · · · catch or
try · · ·with) that can capture the delimited continuation.

3 / 25

Operations and effect handlers, concretely

Every operation symbol op comes with an arity

op : τ → σ

Performing an effect: op V

Handling an effect:

H = {return x 7→ N} (return case)
{op p κ 7→ M} (op case)

4 / 25

Operations and effect handlers, concretely

Every operation symbol op comes with an arity

op : τ → σ

Performing an effect: op V

Handling an effect:

H = {return x 7→ N} (return case)
{op p κ 7→ M} (op case)

4 / 25

Operations and effect handlers, concretely

Every operation symbol op comes with an arity

op : τ → σ

Performing an effect: op V

Handling an effect:

H = {return x 7→ N} (return case)
{op p κ 7→ M} (op case)

4 / 25

Operations and effect handlers, concretely

An effect E is typed by its signature ΣE = {(opi : τi → σi)i}

Example (Global state)

E τ
state = {set : τ → 1, get : 1 → τ}

What if we want multiple states holding values of the type τ .

Generally, how to deal with multiple occurences of the same effect type E
without forefeiting modularity?

5 / 25

Operations and effect handlers, concretely

An effect E is typed by its signature ΣE = {(opi : τi → σi)i}

Example (Global state)

E τ
state = {set : τ → 1, get : 1 → τ}

What if we want multiple states holding values of the type τ .

Generally, how to deal with multiple occurences of the same effect type E
without forefeiting modularity?

5 / 25

Operations and effect handlers, concretely

An effect E is typed by its signature ΣE = {(opi : τi → σi)i}

Example (Global state)

E τ
state = {set : τ → 1, get : 1 → τ}

What if we want multiple states holding values of the type τ .

Generally, how to deal with multiple occurences of the same effect type E
without forefeiting modularity?

5 / 25

Operations and effect handlers, concretely

An effect E is typed by its signature ΣE = {(opi : τi → σi)i}

Example (Global state)

E τ
state = {set : τ → 1, get : 1 → τ}

What if we want multiple states holding values of the type τ .

Generally, how to deal with multiple occurences of the same effect type E
without forefeiting modularity?

5 / 25

The Eff2 approach

Use of a distinct identifier (names) ι for each instance of an effect E.

Performing an effect: ι#opE V

Handling an effect: H = {ι#opE p κ 7→ M} (ι#opE case)

2Andrej Bauer and Matija Pretnar. “Programming with algebraic effects and
handlers”. In: Journal of Logical and Algebraic Methods in Programming 84.1 (2015).
Special Issue: The 23rd Nordic Workshop on Programming Theory (NWPT 2011)
Special Issue: Domains X, International workshop on Domain Theory and applications,
Swansea, 5-7 September, 2011, pp. 108–123.

6 / 25

The Eff2 approach

Use of a distinct identifier (names) ι for each instance of an effect E.

Performing an effect: ι#opE V

Handling an effect: H = {ι#opE p κ 7→ M} (ι#opE case)

2Andrej Bauer and Matija Pretnar. “Programming with algebraic effects and
handlers”. In: Journal of Logical and Algebraic Methods in Programming 84.1 (2015).
Special Issue: The 23rd Nordic Workshop on Programming Theory (NWPT 2011)
Special Issue: Domains X, International workshop on Domain Theory and applications,
Swansea, 5-7 September, 2011, pp. 108–123.

6 / 25

Programming Language

6 / 25

Syntax: Fine-grained call-by-value

Values V, W ≜ x | λx : τ.M | ι

Terms M, N ≜ return V | V V | match V with (Pi → Ni)i∈I
| let x = M in N
| V#op W | handle M with H

Handlers H ≜ {return x 7→ M} | {V#op x κ 7→ M} ⊎ H

ECxts E ≜ • | let x = E in M | handle E with H

7 / 25

Dynamic generation of effects

7 / 25

New construct

Given an effect given by the type (signature) E.

New construct: M, N ≜ · · · | new E

Operational Semantics: (new E;V) 7→ (return ι;V ⊎ {ι})

8 / 25

New construct

Given an effect given by the type (signature) E.

New construct: M, N ≜ · · · | new E

Operational Semantics: (new E;V) 7→ (return ι;V ⊎ {ι})

8 / 25

Disclosure and contextual equivalence

Consider the following variation of an example from3

f (λx .5)

≃ctx

let y = new E in

handle
f (λx .y#op ())

with {return x 7→ return x}
{y#op x κ 7→ κ 5}

3Dariusz Biernacki et al. “Handle with care: relational interpretation of algebraic
effects and handlers”. In: Proceedings of the ACM on Programming Languages 2.POPL
(2017), pp. 1–30.

9 / 25

Disclosure and contextual equivalence

Consider the following variation of an example from3

f (λx .5)

≃ctx

let y = new E in

handle
f (λx .y#op ())

with {return x 7→ return x}
{y#op x κ 7→ κ 5}

3Dariusz Biernacki et al. “Handle with care: relational interpretation of algebraic
effects and handlers”. In: Proceedings of the ACM on Programming Languages 2.POPL
(2017), pp. 1–30.

9 / 25

Disclosure and contextual equivalence (cont.)

Now consider a variation of the previous example:

let y = new E in g y ; f (λx .5)

̸≃ctx

let y = new E in

handle
g y ; f (λx .y#op ())

with {return x 7→ return x}
{y#op x κ 7→ κ 5}

10 / 25

Disclosure and contextual equivalence (cont.)

Now consider a variation of the previous example:

let y = new E in g y ; f (λx .5)

̸≃ctx

let y = new E in

handle
g y ; f (λx .y#op ())

with {return x 7→ return x}
{y#op x κ 7→ κ 5}

10 / 25

Operational game semantics model

10 / 25

Existing fully-abstract models for effect handlers

Adaptation of Lassen’s normal-form bisimulation4

Untyped calculus, global set of operations

Completeness of the model does not rely on having additional stateful
effect in the language.

4Dariusz Biernacki, Serguëı Lenglet, and Piotr Polesiuk. “A complete normal-form
bisimilarity for algebraic effects and handlers”. In: Formal Structures for Computation
and Deduction. 2020.

11 / 25

Existing fully-abstract models for effect handlers

Adaptation of Lassen’s normal-form bisimulation4

Untyped calculus, global set of operations

Completeness of the model does not rely on having additional stateful
effect in the language.

4Dariusz Biernacki, Serguëı Lenglet, and Piotr Polesiuk. “A complete normal-form
bisimilarity for algebraic effects and handlers”. In: Formal Structures for Computation
and Deduction. 2020.

11 / 25

Existing fully-abstract models for effect handlers

Adaptation of Lassen’s normal-form bisimulation4

Untyped calculus, global set of operations

Completeness of the model does not rely on having additional stateful
effect in the language.

4Dariusz Biernacki, Serguëı Lenglet, and Piotr Polesiuk. “A complete normal-form
bisimilarity for algebraic effects and handlers”. In: Formal Structures for Computation
and Deduction. 2020.

11 / 25

Existing fully-abstract models for effect handlers

Adaptation of Lassen’s normal-form bisimulation4

Untyped calculus, global set of operations

Completeness of the model does not rely on having additional stateful
effect in the language.

4Dariusz Biernacki, Serguëı Lenglet, and Piotr Polesiuk. “A complete normal-form
bisimilarity for algebraic effects and handlers”. In: Formal Structures for Computation
and Deduction. 2020.

11 / 25

Operational Game Semantics OGS

Trace semantics following the operational evaluation of a program
(Proponent) and tracing its interaction with its environment
(Opponent).

A trace is an alternating sequence of P-moves (noted with an
overline) and O-moves, they can either be:

▶ Questions:
f (A, c) | f (A, c)

(requesting the result of f A as an answer in c)
▶ Answers:

c(A) | c(A)

12 / 25

Operational Game Semantics OGS

Trace semantics following the operational evaluation of a program
(Proponent) and tracing its interaction with its environment
(Opponent).

A trace is an alternating sequence of P-moves (noted with an
overline) and O-moves, they can either be:

▶ Questions:
f (A, c) | f (A, c)

(requesting the result of f A as an answer in c)
▶ Answers:

c(A) | c(A)

12 / 25

Operational Game Semantics OGS

Trace semantics following the operational evaluation of a program
(Proponent) and tracing its interaction with its environment
(Opponent).

A trace is an alternating sequence of P-moves (noted with an
overline) and O-moves, they can either be:

▶ Questions:
f (A, c) | f (A, c)

(requesting the result of f A as an answer in c)

▶ Answers:
c(A) | c(A)

12 / 25

Operational Game Semantics OGS

Trace semantics following the operational evaluation of a program
(Proponent) and tracing its interaction with its environment
(Opponent).

A trace is an alternating sequence of P-moves (noted with an
overline) and O-moves, they can either be:

▶ Questions:
f (A, c) | f (A, c)

(requesting the result of f A as an answer in c)
▶ Answers:

c(A) | c(A)

12 / 25

Examples

Let’s consider the trace of
f (λx .5)

representing the interaction with the environment given by the evaluation
context

let f = (λg .g V; return true) in []

yielding the trace
f (g , c) g(A, d) d(5) c(true)

13 / 25

Examples

Let’s consider the trace of
f (λx .5)

representing the interaction with the environment given by the evaluation
context

let f = (λg .g V; return true) in []

yielding the trace
f (g , c)

g(A, d) d(5) c(true)

13 / 25

Examples

Let’s consider the trace of
f (λx .5)

representing the interaction with the environment given by the evaluation
context

let f = (λg .g V; return true) in []

yielding the trace
f (g , c) g(A, d)

d(5) c(true)

13 / 25

Examples

Let’s consider the trace of
f (λx .5)

representing the interaction with the environment given by the evaluation
context

let f = (λg .g V; return true) in []

yielding the trace
f (g , c) g(A, d) d(5)

c(true)

13 / 25

Examples

Let’s consider the trace of
f (λx .5)

representing the interaction with the environment given by the evaluation
context

let f = (λg .g V; return true) in []

yielding the trace
f (g , c) g(A, d) d(5) c(true)

13 / 25

Operational Game Semantics (cont.)

Normal Forms:
Mnf = E [f V] | returnV

E [f V] calls for a P-question of the shape f (A, c)

returnV calls for an answer of the shape c(A)

The denotation [[M]]ogs of a given program M is the set of all possible traces
generated by M

14 / 25

Operational Game Semantics (cont.)

Normal Forms:
Mnf = E [f V] | returnV

E [f V] calls for a P-question of the shape f (A, c)

returnV calls for an answer of the shape c(A)

The denotation [[M]]ogs of a given program M is the set of all possible traces
generated by M

14 / 25

Operational Game Semantics (cont.)

Normal Forms:
Mnf = E [f V] | returnV

E [f V] calls for a P-question of the shape f (A, c)

returnV calls for an answer of the shape c(A)

The denotation [[M]]ogs of a given program M is the set of all possible traces
generated by M

14 / 25

Operational Game Semantics (cont.)

Normal Forms:
Mnf = E [f V] | returnV

E [f V] calls for a P-question of the shape f (A, c)

returnV calls for an answer of the shape c(A)

The denotation [[M]]ogs of a given program M is the set of all possible traces
generated by M

14 / 25

OGS model for algebraic effects and handlers

Algebraic effects introduce new normal forms:

Mnf = · · · | E [ι#op V] when ι#op /∈ hdl(E)

Extending the interaction interface with new moves that account for
observable effectful operations.

But, what counts as observable?

15 / 25

OGS model for algebraic effects and handlers

Algebraic effects introduce new normal forms:

Mnf = · · · | E [ι#op V] when ι#op /∈ hdl(E)

Extending the interaction interface with new moves that account for
observable effectful operations.

But, what counts as observable?

15 / 25

OGS model for algebraic effects and handlers

Algebraic effects introduce new normal forms:

Mnf = · · · | E [ι#op V] when ι#op /∈ hdl(E)

Extending the interaction interface with new moves that account for
observable effectful operations.

But, what counts as observable?

15 / 25

Accomodating the OGS model for effect name disclosure

When the program performs an effect

ι#op V

Public: Opponent could potentially handle the effect.

Private: Opponent can only forward the effect to any enclosing
Player’s handling context.

16 / 25

Accomodating the OGS model for effect name disclosure

When the program performs an effect

ι#op V

Public: Opponent could potentially handle the effect.

Private: Opponent can only forward the effect to any enclosing
Player’s handling context.

16 / 25

Accomodating the OGS model for effect name disclosure

When the program performs an effect

ι#op V

Public: Opponent could potentially handle the effect.

Private: Opponent can only forward the effect to any enclosing
Player’s handling context.

16 / 25

Accomodating the OGS model for effect name disclosure

Algebraic effects introduce new normal forms:

Mnf = · · · | E [ι#op V] when ι#op /∈ hdl(E)

observable effect move: c[ι#op A κ]

private effect: fwd(κ)

17 / 25

Accomodating the OGS model for effect name disclosure

Algebraic effects introduce new normal forms:

Mnf = · · · | E [ι#op V] when ι#op /∈ hdl(E)

observable effect move: c[ι#op A κ]

private effect: fwd(κ)

17 / 25

Accomodating the OGS model for effect name disclosure

Algebraic effects introduce new normal forms:

Mnf = · · · | E [ι#op V] when ι#op /∈ hdl(E)

observable effect move: c[ι#op A κ]

private effect: fwd(κ)

17 / 25

Recall the trace of M1 ≜ f (λx .5)

tM1 = f (g , c) g(A, d) d(5) c(true)

representing the interaction with the environment given by the
evaluation context

let f = (λg .g V; return true) in []

Recall that the following term is equivalent to M1

M2 ≜

let y = new E in

handle
f (λx .y#op ())

with {return x 7→ return x}
{y#op x κ 7→ κ 5}

18 / 25

Recall the trace of M1 ≜ f (λx .5)

tM1 = f (g , c) g(A, d) d(5) c(true)

representing the interaction with the environment given by the
evaluation context

let f = (λg .g V; return true) in []

Recall that the following term is equivalent to M1

M2 ≜

let y = new E in

handle
f (λx .y#op ())

with {return x 7→ return x}
{y#op x κ 7→ κ 5}

18 / 25

Now we look at how M2 interacts with the same environement

let f = (λg .g V; return true) in []

M2 evaluates to

handle f (λx .ι#op ()) with {ι#op x κ 7→ κ 5}

then ..

tM2 = f (g , c) g(A, d) fwd(κd) κd(5, c
′) c ′(true)

19 / 25

Now we look at how M2 interacts with the same environement

let f = (λg .g V; return true) in []

M2 evaluates to

handle f (λx .ι#op ()) with {ι#op x κ 7→ κ 5}

then ..

tM2 = f (g , c) g(A, d) fwd(κd) κd(5, c
′) c ′(true)

19 / 25

Now we look at how M2 interacts with the same environement

let f = (λg .g V; return true) in []

M2 evaluates to

handle f (λx .ι#op ()) with {ι#op x κ 7→ κ 5}

then ..

tM2 = f (g , c)

g(A, d) fwd(κd) κd(5, c
′) c ′(true)

19 / 25

Now we look at how M2 interacts with the same environement

let f = (λg .g V; return true) in []

M2 evaluates to

handle f (λx .ι#op ()) with {ι#op x κ 7→ κ 5}

then ..

tM2 = f (g , c) g(A, d)

fwd(κd) κd(5, c
′) c ′(true)

19 / 25

Now we look at how M2 interacts with the same environement

let f = (λg .g V; return true) in []

M2 evaluates to

handle f (λx .ι#op ()) with {ι#op x κ 7→ κ 5}

then ..

tM2 = f (g , c) g(A, d) fwd(κd)

κd(5, c
′) c ′(true)

19 / 25

Now we look at how M2 interacts with the same environement

let f = (λg .g V; return true) in []

M2 evaluates to

handle f (λx .ι#op ()) with {ι#op x κ 7→ κ 5}

then ..

tM2 = f (g , c) g(A, d) fwd(κd) κd(5, c
′)

c ′(true)

19 / 25

Now we look at how M2 interacts with the same environement

let f = (λg .g V; return true) in []

M2 evaluates to

handle f (λx .ι#op ()) with {ι#op x κ 7→ κ 5}

then ..

tM2 = f (g , c) g(A, d) fwd(κd) κd(5, c
′) c ′(true)

19 / 25

Because of this, we get
[[M1]]ogs ̸= [[M2]]ogs

We need a coarser notion of trace equivalence in which

f (g , c) g(A, d) d(5) c(true)
∼tr

f (g , c) g(A, d) fwd(κd) κd(5, c
′) c ′(true)

20 / 25

Because of this, we get
[[M1]]ogs ̸= [[M2]]ogs

We need a coarser notion of trace equivalence in which

f (g , c) g(A, d) d(5) c(true)
∼tr

f (g , c) g(A, d) fwd(κd) κd(5, c
′) c ′(true)

20 / 25

Full-abstraction

Theorem (Soundness)

≃tr ⊆ ≃ctx

Conjecture (Completeness)

≃ctx ⊆ ≃tr

21 / 25

Full-abstraction

Theorem (Soundness)

≃tr ⊆ ≃ctx

Conjecture (Completeness)

≃ctx ⊆ ≃tr

21 / 25

Conclusion

Contextual equivalence is more subtle in the presence of generativity
of first-class effect instances.

Extending OGS model to account for observable and private effectful
behaviour.

Relaxing trace equivalence to coincide with the contextual one.

22 / 25

QUESTIONS?

23 / 25

References

[1] Gordon Plotkin and John Power. “Semantics for algebraic
operations”. In: Electronic Notes in Theoretical Computer Science 45
(2001), pp. 332–345.

[2] Andrej Bauer and Matija Pretnar. “Programming with algebraic
effects and handlers”. In: Journal of Logical and Algebraic Methods in
Programming 84.1 (2015). Special Issue: The 23rd Nordic Workshop
on Programming Theory (NWPT 2011) Special Issue: Domains X,
International workshop on Domain Theory and applications, Swansea,
5-7 September, 2011, pp. 108–123.

[3] Dariusz Biernacki et al. “Handle with care: relational interpretation of
algebraic effects and handlers”. In: Proceedings of the ACM on
Programming Languages 2.POPL (2017), pp. 1–30.

[4] Dariusz Biernacki, Serguëı Lenglet, and Piotr Polesiuk. “A complete
normal-form bisimilarity for algebraic effects and handlers”. In:
Formal Structures for Computation and Deduction. 2020.

24 / 25

Operational Semantics

(E [new E];V) 7→ (E [return ι];V ⊎ {ι})

(E [handle (return V) with H];V)
7→ (E [M{x := V}];V) when Hreturn = {return x 7→ M}

(E [handle E ′[ι#op V] with H];V)
7→ (E [M{x := V}{κ := λy .handle E ′[return y] with H}];V)

when Hop = {ι#op x κ 7→ M}
and ι#op /∈ hdl(E ′)

25 / 25

	Programming Language
	Dynamic generation of effects
	Operational game semantics model
	References

