
Operational Game Semantics for generative
algebraic effects and handlers
(work in progress)

Hamza JAAFAR, Guilhem JABER
Jan 14, 2024

Nantes Universite, LS2N, INRIA Gallinette

1 / 26

Algebraic effects and handlers

• Impure behaviour given by operations on computations1

(e.g choose for non-deterministic choice, raise for
exceptions...)

• Impure behaviour is described by an equational theory on
these operations

• Account for monadic effects whose behaviour is independent
of the current evaluation context

choose(K[t], K[u]) 'op K[choose(t, u)]

• Easier to structure compared to combining monadic effects.
• Handlers arise as homomorphisms between models of such

algebraic theories.
1Plotkin and Power, “Semantics for algebraic operations”.

2 / 26

Algebraic effects and Handlers, programmatically

• Effect operations are constructors or producers of effects.
• Handlers are destructors for effects.

A generalization of exception handlers (constructs such as
try · · · catch or try · · ·with) that can capture the delimited
continuation.

3 / 26

Operations and effect handlers, concretely

Every operation symbol op comes with an arity

op : τ → σ

• Performing an effect: op v

• Handling an effect:

H = {ret x 7→ u} (return case)
{op pκ 7→ t} (op case)

4 / 26

Operations and effect handlers, concretely

An effect E is typed by its signature ΣE = {(opi : τi → σi)i}

Example (Global state)
Eτ

state = {set : τ → 1, get : 1 → τ}

What if we want multiple states holding values of the type τ .

Generally, how to deal with multiple occurences of the same effect
type E without forefeiting modularity?

5 / 26

The Eff2 approach

Use of a distinct identifier (names) ι for each instance of an effect
E.

• Performing an effect: ι#opE v

• Handling an effect: H = {ι#opE pκ 7→ t} (ι#opE case)

2Bauer and Pretnar, “Programming with algebraic effects and handlers”.
6 / 26

Programming Language

6 / 26

Syntax: Fine-grained call-by-value

values v, w := x | λx : τ.t | ι

Terms t, u := ret v | v v | match v with (Pi → ui)i∈I
| let x = t in u
| v#op w | {t}with H

Handlers H := {ret x 7→ t} | {v#op xκ 7→ t}] H

ECxts K := • | let x = K in t | {K}with H

7 / 26

Dynamic generation of effects

7 / 26

New construct

Given an effect given by the type (signature) E.

New construct: t, u := · · · | new E

Operational Semantics: (new E;V) 7→op (ret ι;V] {ι})

8 / 26

Disclosure and contextual equivalence

Consider the following variation of an example from3

f (λx.5)

'ctx

let y =new E in
handle

f (λx.y#op 〈〉)
with {ret x 7→ ret x}

{y#op xκ 7→ κ 5}

3Biernacki, Piróg, et al., “Handle with care: relational interpretation of
algebraic effects and handlers”.

9 / 26

Disclosure and contextual equivalence (cont.)

Now consider a variation of the previous example:

let y= new E in g y; f (λx.5)

6'ctx

let y =new E in
handle

g y ; f (λx.y#op 〈〉)
with {ret x 7→ ret x}

{y#op xκ 7→ κ 5}

10 / 26

Operational game semantics model

10 / 26

Existing fully-abstract models for effect handlers

Adaptation of Lassen’s normal-form bisimulation4

• Untyped calculus, global set of operations
• Completeness of the model does not rely on having additional

stateful effect in the language.

4Biernacki, Lenglet, and Polesiuk, “A complete normal-form bisimilarity for
algebraic effects and handlers”.

11 / 26

Operational Game Semantics OGS

• Trace semantics following the operational evaluation of a
program (Proponent) and tracing its interaction with its
environment (Opponent).

• A trace is an alternating sequence of P-moves (noted with an
overline) and O-moves, they can either be:

• Questions:
f(A, c) | f(A, c)

(requesting the result of f A as an answer in c)
• Answers:

c(A) | c(A)

12 / 26

Examples

Let’s consider the trace of

f (λx.5)

representing the interaction with the environment given by the
evaluation context

let f = (λg.g v; ret tt) in []

yielding the trace

f(g, c) g(A, d) d(5) c(tt)

13 / 26

Operational Game Semantics (cont.)

Normal Forms:
Nf = K[f V] | ret V

• K[f V] calls for a P-question of the shape f(A, c)

• ret V calls for an answer of the shape c(A)

The denotation [[t]]ogs of a given program t is the set of all
possible traces generated by t

14 / 26

OGS model for algebraic effects and handlers

Algebraic effects introduce new normal forms:

Nf = · · · | K[ι#op V] when ι#op /∈ hdl(K)

Extending the interaction interface with new moves that account
for observable effectful operations.

But, what counts as observable?

15 / 26

Accomodating the OGS model for effect name disclosure

When the program performs an effect

ι#op v

• Public: Opponent could potentially handle the effect.
• Private: Opponent can only forward the effect to any

enclosing Player’s handling context.

16 / 26

Accomodating the OGS model for effect name disclosure

Algebraic effects introduce new normal forms:

Nf = · · · | K[ι#op V] when ι#op /∈ hdl(K)

• observable effect move: c[ι#op Aκ]
• private effect: fwd(κ)

17 / 26

• Recall the trace of t1 := f (λx.5)

tt1 = f(g, c) g(A, d) d(5) c(tt)

representing the interaction with the environment given by the
evaluation context

let f = (λg.g v; ret tt) in []

• Recall that the following term is equivalent to t1

t2 :=

let y =new E in
handle

f (λx.y#op 〈〉)
with {ret x 7→ ret x}

{y#op xκ 7→ κ 5}

18 / 26

Now we look at how t2 interacts with the same environement

let f = (λg.g v; ret tt) in []

t2 evaluates to

{f (λx.ι#op 〈〉)}with {ι#op xκ 7→ κ 5}

then ..

tt2 = f(g, c) g(A, d) fwd(κd) κd(5, c′) c′(tt)

19 / 26

Because of this, we get

[[t1]]ogs 6= [[t2]]ogs

We need a coarser notion of trace equivalence in which

f(g, c) g(A, d) d(5) c(tt)
'tr

f(g, c) g(A, d) fwd(κd) κd(5, c′) c′(tt)

20 / 26

Full-abstraction

Theorem (Soundness)
'tr ⊆ 'ctx

Conjecture (Completeness)
'ctx ⊆ 'tr

21 / 26

Conclusion

• Contextual equivalence is more subtle in the presence of
generativity of first-class effect instances.

• Extending OGS model to account for observable and private
effectful behaviour.

• Relaxing trace equivalence to coincide with the contextual
one.

22 / 26

QUESTIONS?

23 / 26

References i

Plotkin, Gordon and John Power. “Semantics for algebraic
operations”. In: Electronic Notes in Theoretical Computer Science
45 (2001), pp. 332–345.
Bauer, Andrej and Matija Pretnar. “Programming with
algebraic effects and handlers”. In: Journal of Logical and
Algebraic Methods in Programming 84.1 (2015). Special Issue: The
23rd Nordic Workshop on Programming Theory (NWPT 2011)
Special Issue: Domains X, International workshop on Domain Theory
and applications, Swansea, 5-7 September, 2011, pp. 108–123.
Biernacki, Dariusz, Maciej Piróg, et al. “Handle with care:
relational interpretation of algebraic effects and handlers”.
In: Proceedings of the ACM on Programming Languages 2.POPL
(2017), pp. 1–30.

24 / 26

References ii

Biernacki, Dariusz, Sergueı̈ Lenglet, and Piotr Polesiuk. “A
complete normal-form bisimilarity for algebraic effects and
handlers”. In: Formal Structures for Computation and Deduction.
2020.

25 / 26

Operational Semantics

(K[new E];V) 7→op (K[ret ι];V] {ι})

(K[{(ret v)}with H];V)
7→op (K[t{x := v}];V) when Hret = {ret x 7→ t}

(K[{K′[ι#op v]}with H];V)
7→op (K[t{x := v}{κ := λy.{K′[ret y]}with H}];V)

when Hop = {ι#op xκ 7→ t}
and ι#op /∈ hdl(K′)

26 / 26

	Programming Language
	Dynamic generation of effects
	Operational game semantics model
	References

