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Algebraic effects originally appeared in the works of Power and Plotkin [I2) [13], where languages with
computational effects such as global state, exceptions and non-determinism are seen as algebraic theories
with carriers being the domain of computations and effects being the operations described by their arity and
the equations they satisfy. Algebraic operations and handlers [14] is a more recent approach to programming
with effects, it is a generalization of exception handlers in the sense that when a performed effect is caught
by the enclosing handler, the latter also gains access to the delimited continuation. It offers a modular
approach in dealing with effects, a seamless way of combining them and allows user-defined effects. One
of the challenges this abstraction poses is that of handling several occurrences of the same effect while
maintaining its modularity. The solutions vary from the generative approach [3|[7], whereby fresh instances
(names) of an effect are dynamically introduced, lezically scoped handlers [6], to introducing new language
constructs [5]. Our aim is to build a fully-abstract model for such a language with typed effects as in [2] ],
focusing on the generative approach, where instances of an effect are taken as first-class values.

Programming language In the present work, we consider a fine-grained call-by-value programming lan-
guage with typed algebraic effects and handlers. We stress that effect instances are first-class values that
can be exchanged in the same way exceptions or ML-style references, in say OCaml, could be shared. The
generative approach coupled with the ability to exchange names introduce several challenges to the design
of a strong static typing system that rules out unhandled performed effects [7]. We do not address these
difficulties in this work.

The operational semantics is standard and is given by an reduction relation over pairs (M; V) formed by
a term M and a set V of all previously generated effect instance names. This component V is crucial to
provide a semantics to the syntactic construction new E representing the generation of a fresh instance of an
effect of type E.

We consider in this work the standard notion of contextual equivalence =.;, for this language. Consider
the two following terms, a variation of an example from [5] with dynamic instance generation.

M; £ f(Ax.5) My £ lety =new Einhandle f (Ax.y#op ()) with {y#op x « — « 5}

These two terms are contextually equivalent because the effect instance bound to y is generated dynam-
ically so that the function f cannot have any prior knowledge of it. And given it has not been disclosed to
the environment, it remains private and thus cannot be handled by f.

Consider now a variation of the previous example:

N; =lety =new Eingy; f (1x.5) Ny = lety =new Einhandle gy; f (Ax.y#op () with {y#op x k — « 5}

The terms are no longer contextually equivalent because the secrecy of the instance bound to y is not
maintained in this example; it is disclosed to g. So a suitably defined context where the fresh instance is
stored by g, and reused subsequently by f to handle the effect would be able to distinguish them.

Normal form bisimulations [10] have been designed for a language with algebraic effects and handlers [4],
and shown to be fully abstract, that is to coincide with contextual equivalence. However, it does not seem
possible to extend normal form bisimulation for a language with generativity and local instances of effects.

Operational Game Semantics Operational game semantics (OGS) is a trace semantics originally in-
troduced in [9], described by a bipartite labelled transition system (LTS) with passive states (environment



configurations) and active states (program configurations). An environment configuration represents the
knowledge state at a given stage of the interaction as it contains the functional values and evaluation con-
texts that a program has disclosed to the environment. They are accessed by the environment respectively
through function and continuation names, that are exchanged through actions of the LTS. A program config-
uration is a term in addition to an environment configuration. While an environment state restricts the set
of possible environment moves, a program move is deterministically given by its normal form. Transitions
are either questions with a label of the form f(A,c) (requesting the result of f applied to A as an answer
through the continuation name c¢) or answers with a label of the form ¢(A) (answering with A through the
continuation named c¢). In OGS, a term is thus interpreted by a set of traces representing all of its possible
interactions with any compatible environment. For example, given the open term f:Unit —Bool ¢ f(Ax.5),
an interaction with an environment in which f does not call its argument and returns true would result in a
trace such as 7o = f(g, ¢) c(true), while an environment in which f calls its argument twice before returning
true is given by 2 = f(g,¢) g(0),d) d(5) g((),d’") d’'(5) c(true).

Whereas in previous game semantics works on computational effects, explicit strategies had to be given
for each effectful construct in the language [Il, [IT], in presence of algebraic effect and handlers one has to
account for observable effects in a generic fashion. Indeed, in this setting one can distinguish between two
kinds of normal forms; open-stuck terms (open normal forms) and control-stuck terms (due to unhandled
effects) []. An open-stuck term, e.g f (Ax.5), calls for a question to the environment on the unknown function
name f represented by a transition labelled by f(g, ¢). For control-stuck terms, we extend the OGS LTS with
a transition labelled by c¢[t#op A r]. Intuitively such terms E[t#op V] call for a request to the environment
(on the enclosing continuation name, say ¢) to handle the performed effect (#op A (if possible) by giving it
access to the delimited continuation & through the abstract name r.

To compute normal forms of terms found in active states, all the states of the LTS have to carry a
component V of previously generated name instances. To track the instances that have been exchanged by
the program and the environment, we embed an extra component N of disclosed instance names. When
the effect instance is private, that is it has not been previously disclosed, the environment cannot possibly
handle it but only propagate it to the enclosing evaluation context. We thus introduce additional transitions
that enforce the propagation and access to the fragment of the evaluation context that belongs to the
environment. The transition fwd(c, d, x.) corresponds roughly to the two actions ¢[t#op A r] d[t#op A k]
where the program first performs an effect, then the environment propagates it with d[(#op A k.| giving the
program access to its delimited continuation ¢ through the name «..

Full-abstraction Building a fully-abstract OGS model means that we need a suitable notion of equivalence
of traces so that the set of traces generated by two terms are equivalent iff they are contextually equivalent.

Let us consider again the terms M; and My from the previous example, even though no context would be
able to distinguish them, the sets of traces they generate are not identical. The interaction with a context in
which f does not call its argument results in identical traces for My and Ms, but it is not the case for a context
that does. Indeed, the trace ty, = F(g,¢) (0, d) d(5) c(h) belongs to the interpretation of M; but not that
of My. Similarily, ty, = (g, ¢) g(0,d) fwd(d, ¢, kq) Ka(5,¢") ¢’ (A) belongs to the interpretation of My but not
that of M;. Both traces represent interactions of M; (resp. M) with a same environment (in which f is a
function that calls its argument once before returning A) that cannot tell them apart. Trace equality then
appears to be too strict and traces need to be quotiented up-to forward moves. We do this by considering a
forward-free canonical form of traces in the definition of trace equivalence.

Completeness of game models famously relies on the property of definability; that is for every object from
the semantic domain (a trace, here) there exists a term that corresponds to it. When contexts have access
to high-order references, the proofs are generally based on constructions that will store in private references
all the functions and continuations shared with the environment so that they could be dereferenced and used
when needed. Moreover, an integer reference is also used to implement a ’clock’, thus tailoring the behavior
expected from the trace (strategy) at any given clock tick. In our setting, this is achieved by a suitable
encoding of (high-order) references by private store effect instances and a resort to the quotient previously
mentioned.
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